1,617 research outputs found

    Rewriting Codes for Joint Information Storage in Flash Memories

    Get PDF
    Memories whose storage cells transit irreversibly between states have been common since the start of the data storage technology. In recent years, flash memories have become a very important family of such memories. A flash memory cell has q states—state 0.1.....q-1 - and can only transit from a lower state to a higher state before the expensive erasure operation takes place. We study rewriting codes that enable the data stored in a group of cells to be rewritten by only shifting the cells to higher states. Since the considered state transitions are irreversible, the number of rewrites is bounded. Our objective is to maximize the number of times the data can be rewritten. We focus on the joint storage of data in flash memories, and study two rewriting codes for two different scenarios. The first code, called floating code, is for the joint storage of multiple variables, where every rewrite changes one variable. The second code, called buffer code, is for remembering the most recent data in a data stream. Many of the codes presented here are either optimal or asymptotically optimal. We also present bounds to the performance of general codes. The results show that rewriting codes can integrate a flash memory’s rewriting capabilities for different variables to a high degree

    Universal Lossless Compression with Unknown Alphabets - The Average Case

    Full text link
    Universal compression of patterns of sequences generated by independently identically distributed (i.i.d.) sources with unknown, possibly large, alphabets is investigated. A pattern is a sequence of indices that contains all consecutive indices in increasing order of first occurrence. If the alphabet of a source that generated a sequence is unknown, the inevitable cost of coding the unknown alphabet symbols can be exploited to create the pattern of the sequence. This pattern can in turn be compressed by itself. It is shown that if the alphabet size kk is essentially small, then the average minimax and maximin redundancies as well as the redundancy of every code for almost every source, when compressing a pattern, consist of at least 0.5 log(n/k^3) bits per each unknown probability parameter, and if all alphabet letters are likely to occur, there exist codes whose redundancy is at most 0.5 log(n/k^2) bits per each unknown probability parameter, where n is the length of the data sequences. Otherwise, if the alphabet is large, these redundancies are essentially at least O(n^{-2/3}) bits per symbol, and there exist codes that achieve redundancy of essentially O(n^{-1/2}) bits per symbol. Two sub-optimal low-complexity sequential algorithms for compression of patterns are presented and their description lengths analyzed, also pointing out that the pattern average universal description length can decrease below the underlying i.i.d.\ entropy for large enough alphabets.Comment: Revised for IEEE Transactions on Information Theor

    Lower Bounds on the Redundancy of Huffman Codes with Known and Unknown Probabilities

    Full text link
    In this paper we provide a method to obtain tight lower bounds on the minimum redundancy achievable by a Huffman code when the probability distribution underlying an alphabet is only partially known. In particular, we address the case where the occurrence probabilities are unknown for some of the symbols in an alphabet. Bounds can be obtained for alphabets of a given size, for alphabets of up to a given size, and for alphabets of arbitrary size. The method operates on a Computer Algebra System, yielding closed-form numbers for all results. Finally, we show the potential of the proposed method to shed some light on the structure of the minimum redundancy achievable by the Huffman code

    Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes

    Full text link
    Given positive integers nn and dd, let A2(n,d)A_2(n,d) denote the maximum size of a binary code of length nn and minimum distance dd. The well-known Gilbert-Varshamov bound asserts that A2(n,d)2n/V(n,d1)A_2(n,d) \geq 2^n/V(n,d-1), where V(n,d)=i=0d(ni)V(n,d) = \sum_{i=0}^{d} {n \choose i} is the volume of a Hamming sphere of radius dd. We show that, in fact, there exists a positive constant cc such that A2(n,d)c2nV(n,d1)log2V(n,d1) A_2(n,d) \geq c \frac{2^n}{V(n,d-1)} \log_2 V(n,d-1) whenever d/n0.499d/n \le 0.499. The result follows by recasting the Gilbert- Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.Comment: 10 pages, 3 figures; to appear in the IEEE Transactions on Information Theory, submitted August 12, 2003, revised March 28, 200
    corecore