5,325 research outputs found

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    Bounds and Invariant Sets for a Class of Switching Systems with Delayed-state-dependent Perturbations

    Full text link
    We present a novel method to compute componentwise transient bounds, ultimate bounds, and invariant regions for a class of switching continuous-time linear systems with perturbation bounds that may depend nonlinearly on a delayed state. The main advantage of the method is its componentwise nature, i.e. the fact that it allows each component of the perturbation vector to have an independent bound and that the bounds and sets obtained are also given componentwise. This componentwise method does not employ a norm for bounding either the perturbation or state vectors, avoids the need for scaling the different state vector components in order to obtain useful results, and may also reduce conservativeness in some cases. We give conditions for the derived bounds to be of local or semi-global nature. In addition, we deal with the case of perturbation bounds whose dependence on a delayed state is of affine form as a particular case of nonlinear dependence for which the bounds derived are shown to be globally valid. A sufficient condition for practical stability is also provided. The present paper builds upon and extends to switching systems with delayed-state-dependent perturbations previous results by the authors. In this sense, the contribution is three-fold: the derivation of the aforementioned extension; the elucidation of the precise relationship between the class of switching linear systems to which the proposed method can be applied and those that admit a common quadratic Lyapunov function (a question that was left open in our previous work); and the derivation of a technique to compute a common quadratic Lyapunov function for switching linear systems with perturbations bounded componentwise by affine functions of the absolute value of the state vector components.Comment: Submitted to Automatic

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure

    Robust Stability Analysis of Nonlinear Hybrid Systems

    Get PDF
    We present a methodology for robust stability analysis of nonlinear hybrid systems, through the algorithmic construction of polynomial and piecewise polynomial Lyapunov-like functions using convex optimization and in particular the sum of squares decomposition of multivariate polynomials. Several improvements compared to previous approaches are discussed, such as treating in a unified way polynomial switching surfaces and robust stability analysis for nonlinear hybrid systems

    Network synchronization: Spectral versus statistical properties

    Full text link
    We consider synchronization of weighted networks, possibly with asymmetrical connections. We show that the synchronizability of the networks cannot be directly inferred from their statistical properties. Small local changes in the network structure can sensitively affect the eigenvalues relevant for synchronization, while the gross statistical network properties remain essentially unchanged. Consequently, commonly used statistical properties, including the degree distribution, degree homogeneity, average degree, average distance, degree correlation, and clustering coefficient, can fail to characterize the synchronizability of networks

    Non-equilibrium almost-stationary states and linear response for gapped quantum systems

    Full text link
    We prove the validity of linear response theory at zero temperature for perturbations of gapped Hamiltonians describing interacting fermions on a lattice. As an essential innovation, our result requires the spectral gap assumption only for the unperturbed Hamiltonian and applies to a large class of perturbations that close the spectral gap. Moreover, we prove formulas also for higher order response coefficients. Our justification of linear response theory is based on a novel extension of the adiabatic theorem to situations where a time-dependent perturbation closes the gap. According to the standard version of the adiabatic theorem, when the perturbation is switched on adiabatically and as long as the gap does not close, the initial ground state evolves into the ground state of the perturbed operator. The new adiabatic theorem states that for perturbations that are either slowly varying potentials or small quasi-local operators, once the perturbation closes the gap, the adiabatic evolution follows non-equilibrium almost-stationary states (NEASS) that we construct explicitly.Comment: v1->v2 section 4 on linear response added, presentation partly reworked. v2->v3 slightly stronger statements for "fast" switching. Final version as to appear in CM

    Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems

    Full text link
    We show that, near periodic orbits, a class of hybrid models can be reduced to or approximated by smooth continuous-time dynamical systems. Specifically, near an exponentially stable periodic orbit undergoing isolated transitions in a hybrid dynamical system, nearby executions generically contract superexponentially to a constant-dimensional subsystem. Under a non-degeneracy condition on the rank deficiency of the associated Poincare map, the contraction occurs in finite time regardless of the stability properties of the orbit. Hybrid transitions may be removed from the resulting subsystem via a topological quotient that admits a smooth structure to yield an equivalent smooth dynamical system. We demonstrate reduction of a high-dimensional underactuated mechanical model for terrestrial locomotion, assess structural stability of deadbeat controllers for rhythmic locomotion and manipulation, and derive a normal form for the stability basin of a hybrid oscillator. These applications illustrate the utility of our theoretical results for synthesis and analysis of feedback control laws for rhythmic hybrid behavior
    corecore