5,906 research outputs found

    On the Performance of Short Block Codes over Finite-State Channels in the Rare-Transition Regime

    Full text link
    As the mobile application landscape expands, wireless networks are tasked with supporting different connection profiles, including real-time traffic and delay-sensitive communications. Among many ensuing engineering challenges is the need to better understand the fundamental limits of forward error correction in non-asymptotic regimes. This article characterizes the performance of random block codes over finite-state channels and evaluates their queueing performance under maximum-likelihood decoding. In particular, classical results from information theory are revisited in the context of channels with rare transitions, and bounds on the probabilities of decoding failure are derived for random codes. This creates an analysis framework where channel dependencies within and across codewords are preserved. Such results are subsequently integrated into a queueing problem formulation. For instance, it is shown that, for random coding on the Gilbert-Elliott channel, the performance analysis based on upper bounds on error probability provides very good estimates of system performance and optimum code parameters. Overall, this study offers new insights about the impact of channel correlation on the performance of delay-aware, point-to-point communication links. It also provides novel guidelines on how to select code rates and block lengths for real-time traffic over wireless communication infrastructures

    Monotonicity and error bounds for networks of Erlang loss queues

    Get PDF
    Networks of Erlang loss queues naturally arise when modelling finite communication systems without delays, among which, most notably are (i) classical circuit switch telephone networks (loss networks) and (ii) present-day wireless mobile networks. Performance measures of interest such as loss probabilities or throughputs can be obtained from the steady state distribution. However, while this steady state distribution has a closed product form expression in the first case (loss networks), it does not have one in the second case due to blocked (and lost) handovers. Product form approximations are therefore suggested. These approximations are obtained by a combined modification of both the state space (by a hypercubic expansion) and the transition rates (by extra redial rates). It will be shown that these product form approximations lead to (1) upper bounds for loss probabilities and \ud (2) analytic error bounds for the accuracy of the approximation for various performance measures.\ud The proofs of these results rely upon both monotonicity results and an analytic error bound method as based on Markov reward theory. This combination and its technicalities are of interest by themselves. The technical conditions are worked out and verified for two specific applications:\ud (1)• pure loss networks as under (2)• GSM networks with fixed channel allocation as under.\ud The results are of practical interest for computational simplifications and, particularly, to guarantee that blocking probabilities do not exceed a given threshold such as for network dimensioning

    Energy-delay tradeoff in wireless network coding

    Get PDF
    A queueing model for wireless communication network in which network coding is employed is introduced. It is shown that networks with coding are closely related to queueing networks with positive and negative customers. Analytical upper and lower bounds on the energy consumption and the delay are obtained using a Markov reward approach. The tradeoff between minimizing energy consumption and minimizing delay is investigated. Exact expressions are given for the minimum energy consumption and the minimum delay attainable in a network

    A Linear Programming Approach to Error Bounds for Random Walks in the Quarter-plane

    Full text link
    We consider the approximation of the performance of random walks in the quarter-plane. The approximation is in terms of a random walk with a product-form stationary distribution, which is obtained by perturbing the transition probabilities along the boundaries of the state space. A Markov reward approach is used to bound the approximation error. The main contribution of the work is the formulation of a linear program that provides the approximation error

    Monotonicity and error bounds for networks of Erlang loss queues

    Get PDF
    Networks of Erlang loss queues naturally arise when modelling finite communication systems without delays, among which, most notably\ud (i) classical circuit switch telephone networks (loss networks) and\ud (ii) present-day wireless mobile networks.\ud \ud Performance measures of interest such as loss probabilities or throughputs can be obtained from the steady state distribution. However, while this steady state distribution has a closed product form expression in the first case (loss networks), it has not in the second case due to blocked (and lost) handovers. Product form approximations are therefore suggested. These approximations are obtained by a combined modification of both the state space (by a hyper cubic expansion) and the transition rates (by extra redial rates). It will be shown that these product form approximations lead to\ud \ud - secure upper bounds for loss probabilities and\ud - analytic error bounds for the accuracy of the approximation for various performance measures.\ud \ud The proofs of these results rely upon both monotonicity results and an analytic error bound method as based on Markov reward theory. This combination and its technicalities are of interest by themselves. The technical conditions are worked out and verified for two specific applications:\ud \ud - pure loss networks as under (i)\ud - GSM-networks with fixed channel allocation as under (ii).\ud \ud The results are of practical interest for computational simplifications and, particularly, to guarantee blocking probabilities not to exceed a given threshold such as for network dimensioning.\u
    corecore