238 research outputs found

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n−1/m1∗(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1∗(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1∗(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1−o(1)1-o(1) for any p(n)=o(n−1/m1∗(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et MĂ©tiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Counting Problems on Quantum Graphs: Parameterized and Exact Complexity Classifications

    Get PDF
    Quantum graphs, as defined by LovĂĄsz in the late 60s, are formal linear combinations of simple graphs with finite support. They allow for the complexity analysis of the problem of computing finite linear combinations of homomorphism counts, the latter of which constitute the foundation of the structural hardness theory for parameterized counting problems: The framework of parameterized counting complexity was introduced by Flum and Grohe, and McCartin in 2002 and forms a hybrid between the classical field of computational counting as founded by Valiant in the late 70s and the paradigm of parameterized complexity theory due to Downey and Fellows which originated in the early 90s. The problem of computing homomorphism numbers of quantum graphs subsumes general motif counting problems and the complexity theoretic implications have only turned out recently in a breakthrough regarding the parameterized subgraph counting problem by Curticapean, Dell and Marx in 2017. We study the problems of counting partially injective and edge-injective homomorphisms, counting induced subgraphs, as well as counting answers to existential first-order queries. We establish novel combinatorial, algebraic and even topological properties of quantum graphs that allow us to provide exhaustive parameterized and exact complexity classifications, including necessary, sufficient and mostly explicit tractability criteria, for all of the previous problems.Diese Arbeit befasst sich mit der Komplexit atsanalyse von mathematischen Problemen die als Linearkombinationen von Graphhomomorphismenzahlen darstellbar sind. Dazu wird sich sogenannter Quantengraphen bedient, bei denen es sich um formale Linearkombinationen von Graphen handelt und welche von Lov asz Ende der 60er eingef uhrt wurden. Die Bestimmung der Komplexit at solcher Probleme erfolgt unter dem von Flum, Grohe und McCartin im Jahre 2002 vorgestellten Paradigma der parametrisierten Z ahlkomplexit atstheorie, die als Hybrid der von Valiant Ende der 70er begr undeten klassischen Z ahlkomplexit atstheorie und der von Downey und Fellows Anfang der 90er eingef uhrten parametrisierten Analyse zu verstehen ist. Die Berechnung von Homomorphismenzahlen zwischen Quantengraphen und Graphen subsumiert im weitesten Sinne all jene Probleme, die das Z ahlen von kleinen Mustern in gro en Strukturen erfordern. Aufbauend auf dem daraus resultierenden Durchbruch von Curticapean, Dell und Marx, das Subgraphz ahlproblem betre end, behandelt diese Arbeit die Analyse der Probleme des Z ahlens von partiell- und kanteninjektiven Homomorphismen, induzierten Subgraphen, und Tre ern von relationalen Datenbankabfragen die sich als existentielle Formeln ausdr ucken lassen. Insbesondere werden dabei neue kombinatorische, algebraische und topologische Eigenschaften von Quantengraphen etabliert, die hinreichende, notwendige und meist explizite Kriterien f ur die Existenz e zienter Algorithmen liefern

    Space-Efficient Algorithms and Verification Schemes for Graph Streams

    Get PDF
    Structured data-sets are often easy to represent using graphs. The prevalence of massive data-sets in the modern world gives rise to big graphs such as web graphs, social networks, biological networks, and citation graphs. Most of these graphs keep growing continuously and pose two major challenges in their processing: (a) it is infeasible to store them entirely in the memory of a regular server, and (b) even if stored entirely, it is incredibly inefficient to reread the whole graph every time a new query appears. Thus, a natural approach for efficiently processing and analyzing such graphs is reading them as a stream of edge insertions and deletions and maintaining a summary that can be (a) stored in affordable memory (significantly smaller than the input size) and (b) used to detect properties of the original graph. In this thesis, we explore the strengths and limitations of such graph streaming algorithms under three main paradigms: classical or standard streaming, adversarially robust streaming, and streaming verification. In the classical streaming model, an algorithm needs to process an adversarially chosen input stream using space sublinear in the input size and return a desired output at the end of the stream. Here, we study a collection of fundamental directed graph problems like reachability, acyclicity testing, and topological sorting. Our investigation reveals that while most problems are provably hard for general digraphs, they admit efficient algorithms for the special and widely-studied subclass of tournament graphs. Further, we exhibit certain problems that become drastically easier when the stream elements arrive in random order rather than adversarial order, as well as problems that do not get much easier even under this relaxation. Furthermore, we study the graph coloring problem in this model and design color-efficient algorithms using novel parameterizations and establish complexity separations between different versions of the problem. The classical streaming setting assumes that the entire input stream is fixed by an adversary before the algorithm reads it. Many randomized algorithms in this setting, however, fail when the stream is extended by an adaptive adversary based on past outputs received. This is the so-called adversarially robust streaming model. We show that graph coloring is significantly harder in the robust setting than in the classical setting, thus establishing the first such separation for a ``natural\u27\u27 problem. We also design a class of efficient robust coloring algorithms using novel techniques. In classical streaming, many important problems turn out to be ``intractable\u27\u27, i.e., provably impossible to solve in sublinear space. It is then natural to consider an enhanced streaming setting where a space-bounded client outsources the computation to a space-unbounded but untrusted cloud service, who replies with the solution and a supporting ``proof\u27\u27 that the client needs to verify. This is called streaming verification or the annotated streaming model. It allows algorithms or verification schemes for the otherwise intractable problems using both space and proof length sublinear in the input size. We devise efficient schemes that improve upon the state of the art for a variety of fundamental graph problems including triangle counting, maximum matching, topological sorting, maximal independent set, graph connectivity, and shortest paths, as well as for computing frequency-based functions such as distinct items and maximum frequency, which have broad applications in graph streaming. Some of our schemes were conjectured to be impossible, while some others attain smooth and optimal tradeoffs between space and communication costs

    Proof of the satisfiability conjecture for large k

    Full text link
    We establish the satisfiability threshold for random kk-SAT for all k≄k0k\ge k_0, with k0k_0 an absolute constant. That is, there exists a limiting density α∗(k)\alpha_*(k) such that a random kk-SAT formula of clause density α\alpha is with high probability satisfiable for α<α∗\alpha<\alpha_*, and unsatisfiable for α>α∗\alpha>\alpha_*. We show that the threshold α∗(k)\alpha_*(k) is given explicitly by the one-step replica symmetry breaking prediction from statistical physics. The proof develops a new analytic method for moment calculations on random graphs, mapping a high-dimensional optimization problem to a more tractable problem of analyzing tree recursions. We believe that our method may apply to a range of random CSPs in the 1-RSB universality class

    Resource Allocation in Communication and Social Networks

    Get PDF
    abstract: As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.Dissertation/ThesisPh.D. Computer Science 201

    Quantum Algorithms for Scientific Computing and Approximate Optimization

    Get PDF
    Quantum computation appears to offer significant advantages over classical computation and this has generated a tremendous interest in the field. In this thesis we study the application of quantum computers to computational problems in science and engineering, and to combinatorial optimization problems. We outline the results below. Algorithms for scientific computing require modules, i.e., building blocks, implementing elementary numerical functions that have well-controlled numerical error, are uniformly scalable and reversible, and that can be implemented efficiently. We derive quantum algorithms and circuits for computing square roots, logarithms, and arbitrary fractional powers, and derive worst-case error and cost bounds. We describe a modular approach to quantum algorithm design as a first step towards numerical standards and mathematical libraries for quantum scientific computing. A fundamental but computationally hard problem in physics is to solve the time-independent Schrödinger equation. This is accomplished by computing the eigenvalues of the corresponding Hamiltonian operator. The eigenvalues describe the different energy levels of a system. The cost of classical deterministic algorithms computing these eigenvalues grows exponentially with the number of system degrees of freedom. The number of degrees of freedom is typically proportional to the number of particles in a physical system. We show an efficient quantum algorithm for approximating a constant number of low-order eigenvalues of a Hamiltonian using a perturbation approach. We apply this algorithm to a special case of the Schrödinger equation and show that our algorithm succeeds with high probability, and has cost that scales polynomially with the number of degrees of freedom and the reciprocal of the desired accuracy. This improves and extends earlier results on quantum algorithms for estimating the ground state energy. We consider the simulation of quantum mechanical systems on a quantum computer. We show a novel divide and conquer approach for Hamiltonian simulation. Using the Hamiltonian structure, we can obtain faster simulation algorithms. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under mild assumptions. We turn to combinatorial optimization problems. An important open question is whether quantum computers provide advantages for the approximation of classically hard combinatorial problems. A promising recently proposed approach of Farhi et al. is the Quantum Approximate Optimization Algorithm (QAOA). We study the application of QAOA to the Maximum Cut problem, and derive analytic performance bounds for the lowest circuit-depth realization, for both general and special classes of graphs. Along the way, we develop a general procedure for analyzing the performance of QAOA for other problems, and show an example demonstrating the difficulty of obtaining similar results for greater depth. We show a generalization of QAOA and its application to wider classes of combinatorial optimization problems, in particular, problems with feasibility constraints. We introduce the Quantum Alternating Operator Ansatz, which utilizes more general unitary operators than the original QAOA proposal. Our framework facilitates low-resource implementations for many applications which may be particularly suitable for early quantum computers. We specify design criteria, and develop a set of results and tools for mapping diverse problems to explicit quantum circuits. We derive constructions for several important prototypical problems including Maximum Independent Set, Graph Coloring, and the Traveling Salesman problem, and show appealing resource cost estimates for their implementations
    • 

    corecore