3,920 research outputs found

    Multiset Combinatorial Batch Codes

    Full text link
    Batch codes, first introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai, mimic a distributed storage of a set of nn data items on mm servers, in such a way that any batch of kk data items can be retrieved by reading at most some tt symbols from each server. Combinatorial batch codes, are replication-based batch codes in which each server stores a subset of the data items. In this paper, we propose a generalization of combinatorial batch codes, called multiset combinatorial batch codes (MCBC), in which nn data items are stored in mm servers, such that any multiset request of kk items, where any item is requested at most rr times, can be retrieved by reading at most tt items from each server. The setup of this new family of codes is motivated by recent work on codes which enable high availability and parallel reads in distributed storage systems. The main problem under this paradigm is to minimize the number of items stored in the servers, given the values of n,m,k,r,tn,m,k,r,t, which is denoted by N(n,k,m,t;r)N(n,k,m,t;r). We first give a necessary and sufficient condition for the existence of MCBCs. Then, we present several bounds on N(n,k,m,t;r)N(n,k,m,t;r) and constructions of MCBCs. In particular, we determine the value of N(n,k,m,1;r)N(n,k,m,1;r) for any nβ‰₯⌊kβˆ’1rβŒ‹(mkβˆ’1)βˆ’(mβˆ’k+1)A(m,4,kβˆ’2)n\geq \left\lfloor\frac{k-1}{r}\right\rfloor{m\choose k-1}-(m-k+1)A(m,4,k-2), where A(m,4,kβˆ’2)A(m,4,k-2) is the maximum size of a binary constant weight code of length mm, distance four and weight kβˆ’2k-2. We also determine the exact value of N(n,k,m,1;r)N(n,k,m,1;r) when r∈{k,kβˆ’1}r\in\{k,k-1\} or k=mk=m

    Some new constructions of optimal linear codes and alphabet-optimal (r,Ξ΄)(r,\delta)-locally repairable codes

    Full text link
    In distributed storage systems, locally repairable codes (LRCs) are designed to reduce disk I/O and repair costs by enabling recovery of each code symbol from a small number of other symbols. To handle multiple node failures, (r,Ξ΄)(r,\delta)-LRCs are introduced to enable local recovery in the event of up to Ξ΄βˆ’1\delta-1 failed nodes. Constructing optimal (r,Ξ΄)(r,\delta)-LRCs has been a significant research topic over the past decade. In \cite{Luo2022}, Luo \emph{et al.} proposed a construction of linear codes by using unions of some projective subspaces within a projective space. Several new classes of Griesmer codes and distance-optimal codes were constructed, and some of them were proved to be alphabet-optimal 22-LRCs. In this paper, we first modify the method of constructing linear codes in \cite{Luo2022} by considering a more general situation of intersecting projective subspaces. This modification enables us to construct good codes with more flexible parameters. Additionally, we present the conditions for the constructed linear codes to qualify as Griesmer codes or achieve distance optimality. Next, we explore the locality of linear codes constructed by eliminating elements from a complete projective space. The novelty of our work lies in establishing the locality as (2,pβˆ’2)(2,p-2), (2,pβˆ’1)(2,p-1), or (2,p)(2,p)-locality, in contrast to the previous literature that only considered 22-locality. Moreover, by combining analysis of code parameters and the C-M like bound for (r,Ξ΄)(r,\delta)-LRCs, we construct some alphabet-optimal (2,Ξ΄)(2,\delta)-LRCs which may be either Griesmer codes or not Griesmer codes. Finally, we investigate the availability and alphabet-optimality of (r,Ξ΄)(r,\delta)-LRCs constructed from our modified framework.Comment: 25 page

    Framework for classifying logical operators in stabilizer codes

    Full text link
    Entanglement, as studied in quantum information science, and non-local quantum correlations, as studied in condensed matter physics, are fundamentally akin to each other. However, their relationship is often hard to quantify due to the lack of a general approach to study both on the same footing. In particular, while entanglement and non-local correlations are properties of states, both arise from symmetries of global operators that commute with the system Hamiltonian. Here, we introduce a framework for completely classifying the local and non-local properties of all such global operators, given the Hamiltonian and a bi-partitioning of the system. This framework is limited to descriptions based on stabilizer quantum codes, but may be generalized. We illustrate the use of this framework to study entanglement and non-local correlations by analyzing global symmetries in topological order, distribution of entanglement and entanglement entropy.Comment: 20 pages, 9 figure
    • …
    corecore