310 research outputs found

    Bounding the radii of balls meeting every connected component of semi-algebraic sets

    Get PDF
    We prove explicit bounds on the radius of a ball centered at the origin which is guaranteed to contain all bounded connected components of a semi-algebraic set S \subset \mathbbm{R}^k defined by a quantifier-free formula involving ss polynomials in \mathbbm{Z}[X_1, ..., X_k] having degrees at most dd, and whose coefficients have bitsizes at most τ\tau. Our bound is an explicit function of s,d,ks, d, k and τ\tau, and does not contain any undetermined constants. We also prove a similar bound on the radius of a ball guaranteed to intersect every connected component of SS (including the unbounded components). While asymptotic bounds of the form 2τdO(k)2^{\tau d^{O (k)}} on these quantities were known before, some applications require bounds which are explicit and which hold for all values of s,d,ks, d, k and τ\tau. The bounds proved in this paper are of this nature.Comment: 11 page

    Geometric Permutations of Non-Overlapping Unit Balls Revisited

    Full text link
    Given four congruent balls A,B,C,DA, B, C, D in RdR^{d} that have disjoint interior and admit a line that intersects them in the order ABCDABCD, we show that the distance between the centers of consecutive balls is smaller than the distance between the centers of AA and DD. This allows us to give a new short proof that nn interior-disjoint congruent balls admit at most three geometric permutations, two if n7n\ge 7. We also make a conjecture that would imply that n4n\geq 4 such balls admit at most two geometric permutations, and show that if the conjecture is false, then there is a counter-example of a highly degenerate nature

    Exact Algorithms for Solving Stochastic Games

    Full text link
    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Quantum ergodicity on the Bruhat-Tits building for PGL(3,F)\text{PGL}(3, F) in the Benjamini-Schramm limit

    Full text link
    We study eigenfunctions of the spherical Hecke algebra acting on L2(Γn\G/K)L^2(\Gamma_n \backslash G / K) where G=PGL(3,F)G = \text{PGL}(3, F) with FF a non-archimedean local field of characteristic zero, K=PGL(3,O)K = \text{PGL}(3, \mathcal{O}) with O\mathcal{O} the ring of integers of FF, and (Γn)(\Gamma_n) is a sequence of cocompact torsionfree lattices. We prove a form of equidistribution on average for eigenfunctions whose spectral parameters lie in the tempered spectrum when the associated sequence of quotients of the Bruhat-Tits building Benjamini-Schramm converges to the building itself.Comment: 111 pages, 25 figures, 2 table

    Geometric algorithms for cavity detection on protein surfaces

    Get PDF
    Macromolecular structures such as proteins heavily empower cellular processes or functions. These biological functions result from interactions between proteins and peptides, catalytic substrates, nucleotides or even human-made chemicals. Thus, several interactions can be distinguished: protein-ligand, protein-protein, protein-DNA, and so on. Furthermore, those interactions only happen under chemical- and shapecomplementarity conditions, and usually take place in regions known as binding sites. Typically, a protein consists of four structural levels. The primary structure of a protein is made up of its amino acid sequences (or chains). Its secondary structure essentially comprises -helices and -sheets, which are sub-sequences (or sub-domains) of amino acids of the primary structure. Its tertiary structure results from the composition of sub-domains into domains, which represent the geometric shape of the protein. Finally, the quaternary structure of a protein results from the aggregate of two or more tertiary structures, usually known as a protein complex. This thesis fits in the scope of structure-based drug design and protein docking. Specifically, one addresses the fundamental problem of detecting and identifying protein cavities, which are often seen as tentative binding sites for ligands in protein-ligand interactions. In general, cavity prediction algorithms split into three main categories: energy-based, geometry-based, and evolution-based. Evolutionary methods build upon evolutionary sequence conservation estimates; that is, these methods allow us to detect functional sites through the computation of the evolutionary conservation of the positions of amino acids in proteins. Energy-based methods build upon the computation of interaction energies between protein and ligand atoms. In turn, geometry-based algorithms build upon the analysis of the geometric shape of the protein (i.e., its tertiary structure) to identify cavities. This thesis focuses on geometric methods. We introduce here three new geometric-based algorithms for protein cavity detection. The main contribution of this thesis lies in the use of computer graphics techniques in the analysis and recognition of cavities in proteins, much in the spirit of molecular graphics and modeling. As seen further ahead, these techniques include field-of-view (FoV), voxel ray casting, back-face culling, shape diameter functions, Morse theory, and critical points. The leading idea is to come up with protein shape segmentation, much like we commonly do in mesh segmentation in computer graphics. In practice, protein cavity algorithms are nothing more than segmentation algorithms designed for proteins.Estruturas macromoleculares tais como as proteínas potencializam processos ou funções celulares. Estas funções resultam das interações entre proteínas e peptídeos, substratos catalíticos, nucleótideos, ou até mesmo substâncias químicas produzidas pelo homem. Assim, há vários tipos de interacções: proteína-ligante, proteína-proteína, proteína-DNA e assim por diante. Além disso, estas interações geralmente ocorrem em regiões conhecidas como locais de ligação (binding sites, do inglês) e só acontecem sob condições de complementaridade química e de forma. É também importante referir que uma proteína pode ser estruturada em quatro níveis. A estrutura primária que consiste em sequências de aminoácidos (ou cadeias), a estrutura secundária que compreende essencialmente por hélices e folhas , que são subsequências (ou subdomínios) dos aminoácidos da estrutura primária, a estrutura terciária que resulta da composição de subdomínios em domínios, que por sua vez representa a forma geométrica da proteína, e por fim a estrutura quaternária que é o resultado da agregação de duas ou mais estruturas terciárias. Este último nível estrutural é frequentemente conhecido por um complexo proteico. Esta tese enquadra-se no âmbito da conceção de fármacos baseados em estrutura e no acoplamento de proteínas. Mais especificamente, aborda-se o problema fundamental da deteção e identificação de cavidades que são frequentemente vistos como possíveis locais de ligação (putative binding sites, do inglês) para os seus ligantes (ligands, do inglês). De forma geral, os algoritmos de identificação de cavidades dividem-se em três categorias principais: baseados em energia, geometria ou evolução. Os métodos evolutivos baseiam-se em estimativas de conservação das sequências evolucionárias. Isto é, estes métodos permitem detectar locais funcionais através do cálculo da conservação evolutiva das posições dos aminoácidos das proteínas. Em relação aos métodos baseados em energia estes baseiam-se no cálculo das energias de interação entre átomos da proteína e do ligante. Por fim, os algoritmos geométricos baseiam-se na análise da forma geométrica da proteína para identificar cavidades. Esta tese foca-se nos métodos geométricos. Apresentamos nesta tese três novos algoritmos geométricos para detecção de cavidades em proteínas. A principal contribuição desta tese está no uso de técnicas de computação gráfica na análise e reconhecimento de cavidades em proteínas, muito no espírito da modelação e visualização molecular. Como pode ser visto mais à frente, estas técnicas incluem o field-of-view (FoV), voxel ray casting, back-face culling, funções de diâmetro de forma, a teoria de Morse, e os pontos críticos. A ideia principal é segmentar a proteína, à semelhança do que acontece na segmentação de malhas em computação gráfica. Na prática, os algoritmos de detecção de cavidades não são nada mais que algoritmos de segmentação de proteínas
    corecore