150 research outputs found

    Simple bounds for queueing systems with breakdowns

    Get PDF
    Computationally attractive and intuitively obvious simple bounds are proposed for finite service systems which are subject to random breakdowns. The services are assumed to be exponential. The up and down periods are allowed to be generally distributed. The bounds are based on product-form modifications and depend only on means. A formal proof is presented. This proof is of interest in itself. Numerical support indicates a potential usefulness for quick engineering and performance evaluation purposes

    Truncation of Markov chains with applications to queueing

    Get PDF

    Queues with Congestion-dependent Feedback

    Get PDF
    This dissertation expands the theory of feedback queueing systems and applies a number of these models to a performance analysis of the Transmission Control Protocol, a flow control protocol commonly used in the Internet

    Detecting Markov Chain Instability: A Monte Carlo Approach

    Get PDF
    We devise a Monte Carlo based method for detecting whether a non-negative Markov chain is stable for a given set of parameter values. More precisely, for a given subset of the parameter space, we develop an algorithm that is capable of deciding whether the set has a subset of positive Lebesgue measure for which the Markov chain is unstable. The approach is based on a variant of simulated annealing, and consequently only mild assumptions are needed to obtain performance guarantees. The theoretical underpinnings of our algorithm are based on a result stating that the stability of a set of parameters can be phrased in terms of the stability of a single Markov chain that searches the set for unstable parameters. Our framework leads to a procedure that is capable of performing statistically rigorous tests for instability, which has been extensively tested using several examples of standard and non-standard queueing networks

    Manufacturing flow line systems: a review of models and analytical results

    Get PDF
    The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.National Science Foundation (U.S.) (Grant DDM-8914277

    Large deviations for acyclic networks of queues with correlated Gaussian inputs

    Get PDF
    We consider an acyclic network of single-server queues with heterogeneous processing rates. It is assumed that each queue is fed by the superposition of a large number of i.i.d. Gaussian processes with stationary increments and positive drifts, which can be correlated across different queues. The flow of work departing from each server is split deterministically and routed to its neighbors according to a fixed routing matrix, with a fraction of it leaving the network altogether. We study the exponential decay rate of the probability that the steady-state queue length at any given node in the network is above any fixed threshold, also referred to as the "overflow probability". In particular, we first leverage Schilder's sample-path large deviations theorem to obtain a general lower bound for the limit of this exponential decay rate, as the number of Gaussian processes goes to infinity. Then, we show that this lower bound is tight under additional technical conditions. Finally, we show that if the input processes to the different queues are non-negatively correlated, non short-range dependent fractional Brownian motions, and if the processing rates are large enough, then the asymptotic exponential decay rates of the queues coincide with the ones of isolated queues with appropriate Gaussian inputs

    Bounds Computation for Symmetric Nets

    Get PDF
    Monotonicity in Markov chains is the starting point for quantitative abstraction of complex probabilistic systems leading to (upper or lower) bounds for probabilities and mean values relevant to their analysis. While numerous case studies exist in the literature, there is no generic model for which monotonicity is directly derived from its structure. Here we propose such a model and formalize it as a subclass of Stochastic Symmetric (Petri) Nets (SSNs) called Stochastic Monotonic SNs (SMSNs). On this subclass the monotonicity is proven by coupling arguments that can be applied on an abstract description of the state (symbolic marking). Our class includes both process synchronizations and resource sharings and can be extended to model open or cyclic closed systems. Automatic methods for transforming a non monotonic system into a monotonic one matching the MSN pattern, or for transforming a monotonic system with large state space into one with reduced state space are presented. We illustrate the interest of the proposed method by expressing standard monotonic models and modelling a flexible manufacturing system case study
    corecore