113 research outputs found

    Bounding the coefficients of the characteristic polynomials of simple binary matroids

    Get PDF
    AbstractWe give an upper bound and a class of lower bounds on the coefficients of the characteristic polynomial of a simple binary matroid. This generalizes the corresponding bounds for graphic matroids of Li and Tian (1978) [3], as well as a matroid lower bound of Björner (1980) [1] for simple binary matroids. As the flow polynomial of a graph G is the characteristic polynomial of the dual matroid M∗(G), the bound applies to flow polynomials

    Lattice path matroids: enumerative aspects and Tutte polynomials

    Get PDF
    Fix two lattice paths P and Q from (0,0) to (m,r) that use East and North steps with P never going above Q. We show that the lattice paths that go from (0,0) to (m,r) and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroids and we study three important matroid invariants, namely the Tutte polynomial and, for special types of lattice path matroids, the characteristic polynomial and the beta invariant. In particular, we show that the Tutte polynomial is the generating function for two basic lattice path statistics and we show that certain sequences of lattice path matroids give rise to sequences of Tutte polynomials for which there are relatively simple generating functions. We show that Tutte polynomials of lattice path matroids can be computed in polynomial time. Also, we obtain a new result about lattice paths from an analysis of the beta invariant of certain lattice path matroids.Comment: 28 pages, 11 figure

    The multivariate Tutte polynomial (alias Potts model) for graphs and matroids

    Get PDF
    The multivariate Tutte polynomial (known to physicists as the Potts-model partition function) can be defined on an arbitrary finite graph G, or more generally on an arbitrary matroid M, and encodes much important combinatorial information about the graph (indeed, in the matroid case it encodes the full structure of the matroid). It contains as a special case the familiar two-variable Tutte polynomial -- and therefore also its one-variable specializations such as the chromatic polynomial, the flow polynomial and the reliability polynomial -- but is considerably more flexible. I begin by giving an introduction to all these problems, stressing the advantages of working with the multivariate version. I then discuss some questions concerning the complex zeros of the multivariate Tutte polynomial, along with their physical interpretations in statistical mechanics (in connection with the Yang--Lee approach to phase transitions) and electrical circuit theory. Along the way I mention numerous open problems. This survey is intended to be understandable to mathematicians with no prior knowledge of physics

    On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers

    Get PDF
    We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date

    Some Applications of the Weighted Combinatorial Laplacian

    Get PDF
    The weighted combinatorial Laplacian of a graph is a symmetric matrix which is the discrete analogue of the Laplacian operator. In this thesis, we will study a new application of this matrix to matching theory yielding a new characterization of factor-criticality in graphs and matroids. Other applications are from the area of the physical design of very large scale integrated circuits. The placement of the gates includes the minimization of a quadratic form given by a weighted Laplacian. A method based on the dual constrained subgradient method is proposed to solve the simultaneous placement and gate-sizing problem. A crucial step of this method is the projection to the flow space of an associated graph, which can be performed by minimizing a quadratic form given by the unweighted combinatorial Laplacian.Andwendungen der gewichteten kombinatorischen Laplace-Matrix Die gewichtete kombinatorische Laplace-Matrix ist das diskrete Analogon des Laplace-Operators. In dieser Arbeit stellen wir eine neuartige Charakterisierung von Faktor-Kritikalität von Graphen und Matroiden mit Hilfe dieser Matrix vor. Wir untersuchen andere Anwendungen im Bereich des Entwurfs von höchstintegrierten Schaltkreisen. Die Platzierung basiert auf der Minimierung einer quadratischen Form, die durch eine gewichtete kombinatorische Laplace-Matrix gegeben ist. Wir präsentieren einen Algorithmus für das allgemeine simultane Platzierungs- und Gattergrößen-Optimierungsproblem, der auf der dualen Subgradientenmethode basiert. Ein wichtiger Bestandteil dieses Verfahrens ist eine Projektion auf den Flussraum eines assoziierten Graphen, die als die Minimierung einer durch die Laplace-Matrix gegebenen quadratischen Form aufgefasst werden kann

    Exact solutions for the two- and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan

    Full text link
    The two- and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan have been calculated exactly for arbitrary size as well as arbitrary individual edge and node reliabilities, using transfer matrices of dimension four at most. While the all-terminal reliabilities of these graphs are identical, the special case of identical edge (pp) and node (ρ\rho) reliabilities shows that their two-terminal reliabilities are quite distinct, as demonstrated by their generating functions and the locations of the zeros of the reliability polynomials, which undergo structural transitions at ρ=1/2\rho = \displaystyle {1/2}

    Optimal Bounds on Approximation of Submodular and XOS Functions by Juntas

    Full text link
    We investigate the approximability of several classes of real-valued functions by functions of a small number of variables ({\em juntas}). Our main results are tight bounds on the number of variables required to approximate a function f:{0,1}n[0,1]f:\{0,1\}^n \rightarrow [0,1] within 2\ell_2-error ϵ\epsilon over the uniform distribution: 1. If ff is submodular, then it is ϵ\epsilon-close to a function of O(1ϵ2log1ϵ)O(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}) variables. This is an exponential improvement over previously known results. We note that Ω(1ϵ2)\Omega(\frac{1}{\epsilon^2}) variables are necessary even for linear functions. 2. If ff is fractionally subadditive (XOS) it is ϵ\epsilon-close to a function of 2O(1/ϵ2)2^{O(1/\epsilon^2)} variables. This result holds for all functions with low total 1\ell_1-influence and is a real-valued analogue of Friedgut's theorem for boolean functions. We show that 2Ω(1/ϵ)2^{\Omega(1/\epsilon)} variables are necessary even for XOS functions. As applications of these results, we provide learning algorithms over the uniform distribution. For XOS functions, we give a PAC learning algorithm that runs in time 2poly(1/ϵ)poly(n)2^{poly(1/\epsilon)} poly(n). For submodular functions we give an algorithm in the more demanding PMAC learning model (Balcan and Harvey, 2011) which requires a multiplicative 1+γ1+\gamma factor approximation with probability at least 1ϵ1-\epsilon over the target distribution. Our uniform distribution algorithm runs in time 2poly(1/(γϵ))poly(n)2^{poly(1/(\gamma\epsilon))} poly(n). This is the first algorithm in the PMAC model that over the uniform distribution can achieve a constant approximation factor arbitrarily close to 1 for all submodular functions. As follows from the lower bounds in (Feldman et al., 2013) both of these algorithms are close to optimal. We also give applications for proper learning, testing and agnostic learning with value queries of these classes.Comment: Extended abstract appears in proceedings of FOCS 201

    Algebraic and Combinatorial Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. The algebraic theme continues in some of the most exciting recent progress in computational complexity. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Another surprising connection is that the algebraic techniques invented to show lower bounds now prove useful to develop efficient algorithms. For example, Williams showed how to use the polynomial method to obtain faster all-pair-shortest-path algorithms. This emphases once again the central role of algebra in computer science. The seminar aims to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and this seminar can play an important role in educating a diverse community about the latest new techniques, spurring further progress
    corecore