4,246 research outputs found

    Exploring Halo Substructure with Giant Stars IV: The Extended Structure of the Ursa Minor Dwarf Spheroidal

    Full text link
    We present a large area photometric survey of the Ursa Minor dSph. We identify UMi giant star candidates extending to ~3 deg from the center of the dSph. Comparison to previous catalogues of stars within the tidal radius of UMi suggests that our photometric luminosity classification is 100% accurate. Over a large fraction of the survey area, blue horizontal branch stars associated with UMi can also be identified. The spatial distribution of both the UMi giant stars and the BHB stars are remarkably similar, and a large fraction of both samples of stars are found outside the tidal radius of UMi. An isodensity contour map of the stars within the tidal radius of UMi reveals two morphological peculiarities: (1) The highest density of dSph stars is offset from the center of symmetry of the outer isodensity contours. (2) The overall shape of the outer contours appear S-shaped. We find that previously determined King profiles with ~50' tidal radii do not fit well the distribution of our UMi stars. A King profile with a larger tidal radius produces a reasonable fit, however a power law with index -3 provides a better fit for radii > 20'. The existence of UMi stars at large distances from the core of the galaxy, the peculiar morphology of the dSph within its tidal radius, and the shape of its surface density profile all suggest that UMi is evolving significantly due to the tidal influence of the Milky Way. However, the photometric data on UMi stars alone does not allow us to determine if the candidate extratidal stars are now unbound or if they remain bound to the dSph within an extended dark matter halo. (Abridged)Comment: accepted by AJ, 32 pages, 15 figures, emulateapj5 styl

    A spatial data handling system for retrieval of images by unrestricted regions of user interest

    Get PDF
    The Intelligent Data Management (IDM) project at NASA/Goddard Space Flight Center has prototyped an Intelligent Information Fusion System (IIFS), which automatically ingests metadata from remote sensor observations into a large catalog which is directly queryable by end-users. The greatest challenge in the implementation of this catalog was supporting spatially-driven searches, where the user has a possible complex region of interest and wishes to recover those images that overlap all or simply a part of that region. A spatial data management system is described, which is capable of storing and retrieving records of image data regardless of their source. This system was designed and implemented as part of the IIFS catalog. A new data structure, called a hypercylinder, is central to the design. The hypercylinder is specifically tailored for data distributed over the surface of a sphere, such as satellite observations of the Earth or space. Operations on the hypercylinder are regulated by two expert systems. The first governs the ingest of new metadata records, and maintains the efficiency of the data structure as it grows. The second translates, plans, and executes users' spatial queries, performing incremental optimization as partial query results are returned

    Simulating Hard Rigid Bodies

    Full text link
    Several physical systems in condensed matter have been modeled approximating their constituent particles as hard objects. The hard spheres model has been indeed one of the cornerstones of the computational and theoretical description in condensed matter. The next level of description is to consider particles as rigid objects of generic shape, which would enrich the possible phenomenology enormously. This kind of modeling will prove to be interesting in all those situations in which steric effects play a relevant role. These include biology, soft matter, granular materials and molecular systems. With a view to developing a general recipe for event-driven Molecular Dynamics simulations of hard rigid bodies, two algorithms for calculating the distance between two convex hard rigid bodies and the contact time of two colliding hard rigid bodies solving a non-linear set of equations will be described. Building on these two methods, an event-driven molecular dynamics algorithm for simulating systems of convex hard rigid bodies will be developed and illustrated in details. In order to optimize the collision detection between very elongated hard rigid bodies, a novel nearest-neighbor list method based on an oriented bounding box will be introduced and fully explained. Efficiency and performance of the new algorithm proposed will be extensively tested for uniaxial hard ellipsoids and superquadrics. Finally applications in various scientific fields will be reported and discussed.Comment: 36 pages, 17 figure

    Neotectonics of the Sumatran fault, Indonesia

    Get PDF
    The 1900-km-long, trench-parallel Sumatran fault accommodates a significant amount of the right-lateral component of oblique convergence between the Eurasian and Indian/Australian plates from 10°N to 7°S. Our detailed map of the fault, compiled from topographic maps and stereographic aerial photographs, shows that unlike many other great strike-slip faults, the Sumatran fault is highly segmented. Cross-strike width of step overs between the 19 major subaerial segments is commonly many kilometers. The influence of these step overs on historical seismic source dimensions suggests that the dimensions of future events will also be influenced by fault geometry. Geomorphic offsets along the fault range as high as ~20 km and may represent the total offset across the fault. If this is so, other structures must have accommodated much of the dextral component of oblique convergence during the past few million years. Our analysis of stretching of the forearc region, near the southern tip of Sumatra, constrains the combined dextral slip on the Sumatran and Mentawai faults to be no more than 100 km in the past few million years. The shape and location of the Sumatran fault and the active volcanic arc are highly correlated with the shape and character of the underlying subducting oceanic lithosphere. Nonetheless, active volcanic centers of the Sumatran volcanic arc have not influenced noticeably the geometry of the active Sumatran fault. On the basis of its geologic history and pattern of deformation, we divide the Sumatran plate margin into northern, central and southern domains. We support previous proposals that the geometry and character of the subducting Investigator fracture zone are affecting the shape and evolution of the Sumatran fault system within the central domain. The southern domain is the most regular. The Sumatran fault there comprises six right-stepping segments. This pattern indicates that the overall trend of the fault deviates 4° clockwise from the slip vector between the two blocks it separates. The regularity of this section and its association with the portion of the subduction zone that generated the giant (M_w 9) earthquake of 1833 suggest that a geometrically simple subducting slab results in both simple strike-slip faulting and unusually large subduction earthquakes

    Event-Driven Simulation of the Dynamics of Hard Ellipsoids

    Full text link
    We introduce a novel algorithm to perform event-driven simulations of hard rigid bodies of arbitrary shape, that relies on the evaluation of the geometric distance. In the case of a monodisperse system of uniaxial hard ellipsoids,we perform molecular dynamics simulations varying the aspect-ratio X0 and the packing fraction phi. We evaluate the translational Dtrans and the rotational Drot diffusion coefficient and the associated isodiffusivity lines in the phi-X0 plane. We observe a decoupling of the translational and rotational dynamics which generates an almost perpendicular crossing of the Dtrans and Drot isodiffusivity lines. While the self intermediate scattering function exhibits stretched relaxation, i.e. glassy dynamics, only for large phi and X0 about equals to 1, the second order orientational correlator C2(t) shows stretching only for large and small X0 values. We discuss these findings in the context of a possible pre-nematic order driven glass transition.Comment: Proceedings of IWCS2007 Sendai (Japan
    • …
    corecore