92,809 research outputs found

    Iterative Object and Part Transfer for Fine-Grained Recognition

    Full text link
    The aim of fine-grained recognition is to identify sub-ordinate categories in images like different species of birds. Existing works have confirmed that, in order to capture the subtle differences across the categories, automatic localization of objects and parts is critical. Most approaches for object and part localization relied on the bottom-up pipeline, where thousands of region proposals are generated and then filtered by pre-trained object/part models. This is computationally expensive and not scalable once the number of objects/parts becomes large. In this paper, we propose a nonparametric data-driven method for object and part localization. Given an unlabeled test image, our approach transfers annotations from a few similar images retrieved in the training set. In particular, we propose an iterative transfer strategy that gradually refine the predicted bounding boxes. Based on the located objects and parts, deep convolutional features are extracted for recognition. We evaluate our approach on the widely-used CUB200-2011 dataset and a new and large dataset called Birdsnap. On both datasets, we achieve better results than many state-of-the-art approaches, including a few using oracle (manually annotated) bounding boxes in the test images.Comment: To appear in ICME 2017 as an oral pape

    DOTA: A Large-scale Dataset for Object Detection in Aerial Images

    Get PDF
    Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect 28062806 aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using 1515 common object categories. The fully annotated DOTA images contains 188,282188,282 instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.Comment: Accepted to CVPR 201

    Single-leg airline revenue management with overbooking

    Get PDF
    Airline revenue management is about identifying the maximum revenue seat allocation policies. Since a major loss in revenue results from cancellations and no-show passengers, over the years overbooking has received a significant attention in the literature. In this study, we propose new models for static and dynamic single-leg overbooking problems. In the static case, we introduce computationally tractable models that give upper and lower bounds for the optimal expected revenue. In the dynamic case, we propose a new dynamic programming model, which is based on two streams of arrivals. The first stream corresponds to the booking requests and the second stream represents the cancellations. We also conduct simulation experiments to illustrate the proposed models and the solution methods

    Single-leg airline revenue management with overbooking

    Get PDF
    Airline revenue management is about identifying the maximum revenue seat allocation policies. Since a major loss in revenue results from cancellations and no-show passengers, over the years overbooking has received a significant attention in the literature. In this study, we propose new models for static and dynamic single-leg overbooking problems. In the static case, we introduce computationally tractable models that give upper and lower bounds for the optimal expected revenue. In the dynamic case, we propose a new dynamic programming model, which is based on two streams of arrivals. The first stream corresponds to the booking requests and the second stream represents the cancellations. We also conduct simulation experiments to illustrate the proposed models and the solution methods

    Focusing on the Big Picture: Insights into a Systems Approach to Deep Learning for Satellite Imagery

    Full text link
    Deep learning tasks are often complicated and require a variety of components working together efficiently to perform well. Due to the often large scale of these tasks, there is a necessity to iterate quickly in order to attempt a variety of methods and to find and fix bugs. While participating in IARPA's Functional Map of the World challenge, we identified challenges along the entire deep learning pipeline and found various solutions to these challenges. In this paper, we present the performance, engineering, and deep learning considerations with processing and modeling data, as well as underlying infrastructure considerations that support large-scale deep learning tasks. We also discuss insights and observations with regard to satellite imagery and deep learning for image classification.Comment: Accepted to IEEE Big Data 201

    Subset Feature Learning for Fine-Grained Category Classification

    Full text link
    Fine-grained categorisation has been a challenging problem due to small inter-class variation, large intra-class variation and low number of training images. We propose a learning system which first clusters visually similar classes and then learns deep convolutional neural network features specific to each subset. Experiments on the popular fine-grained Caltech-UCSD bird dataset show that the proposed method outperforms recent fine-grained categorisation methods under the most difficult setting: no bounding boxes are presented at test time. It achieves a mean accuracy of 77.5%, compared to the previous best performance of 73.2%. We also show that progressive transfer learning allows us to first learn domain-generic features (for bird classification) which can then be adapted to specific set of bird classes, yielding improvements in accuracy
    corecore