9,880 research outputs found

    The Partial Visibility Representation Extension Problem

    Full text link
    For a graph GG, a function ψ\psi is called a \emph{bar visibility representation} of GG when for each vertex v∈V(G)v \in V(G), ψ(v)\psi(v) is a horizontal line segment (\emph{bar}) and uv∈E(G)uv \in E(G) iff there is an unobstructed, vertical, ε\varepsilon-wide line of sight between ψ(u)\psi(u) and ψ(v)\psi(v). Graphs admitting such representations are well understood (via simple characterizations) and recognizable in linear time. For a directed graph GG, a bar visibility representation ψ\psi of GG, additionally, puts the bar ψ(u)\psi(u) strictly below the bar ψ(v)\psi(v) for each directed edge (u,v)(u,v) of GG. We study a generalization of the recognition problem where a function ψ′\psi' defined on a subset V′V' of V(G)V(G) is given and the question is whether there is a bar visibility representation ψ\psi of GG with ψ(v)=ψ′(v)\psi(v) = \psi'(v) for every v∈V′v \in V'. We show that for undirected graphs this problem together with closely related problems are \NP-complete, but for certain cases involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Natural realizations of sparsity matroids

    Get PDF
    A hypergraph G with n vertices and m hyperedges with d endpoints each is (k,l)-sparse if for all sub-hypergraphs G' on n' vertices and m' edges, m'\le kn'-l. For integers k and l satisfying 0\le l\le dk-1, this is known to be a linearly representable matroidal family. Motivated by problems in rigidity theory, we give a new linear representation theorem for the (k,l)-sparse hypergraphs that is natural; i.e., the representing matrix captures the vertex-edge incidence structure of the underlying hypergraph G.Comment: Corrected some typos from the previous version; to appear in Ars Mathematica Contemporane

    Generalized Lattice Gauge Theory, Spin Foams and State Sum Invariants

    Get PDF
    We construct a generalization of pure lattice gauge theory (LGT) where the role of the gauge group is played by a tensor category. The type of tensor category admissible (spherical, ribbon, symmetric) depends on the dimension of the underlying manifold (<=3, <=4, any). Ordinary LGT is recovered if the category is the (symmetric) category of representations of a compact Lie group. In the weak coupling limit we recover discretized BF-theory in terms of a coordinate free version of the spin foam formulation. We work on general cellular decompositions of the underlying manifold. In particular, we are able to formulate LGT as well as spin foam models of BF-type with quantum gauge group (in dimension <=4) and with supersymmetric gauge group (in any dimension). Technically, we express the partition function as a sum over diagrams denoting morphisms in the underlying category. On the LGT side this enables us to introduce a generalized notion of gauge fixing corresponding to a topological move between cellular decompositions of the underlying manifold. On the BF-theory side this allows a rather geometric understanding of the state sum invariants of Turaev/Viro, Barrett/Westbury and Crane/Yetter which we recover. The construction is extended to include Wilson loop and spin network type observables as well as manifolds with boundaries. In the topological (weak coupling) case this leads to TQFTs with or without embedded spin networks.Comment: 58 pages, LaTeX with AMS and XY-Pic macros; typos corrected and references update

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi

    Steady Motion of a Rigid Disk of Finite Thickness on a Horizontal Plane

    Full text link
    The article discusses the steady motion of a rigid disk of finite thickness rolling on its edge on a horizontal plane under the influence of gravity. The governing equations are presented and two cases allowing for a steady state solution are considered: rolling on consistently rough ground and rolling on perfectly smooth ground. The conditions of steady motion are derived for both kinds of ground and it is shown that the possible steady motion of a disk is either on a straight line in a circle. Also oscillations about steady state are discussed and conditions for stable motion are established.Comment: 28 pages, 7 figure
    • …
    corecore