20,013 research outputs found

    Centroidal localization game

    Get PDF
    One important problem in a network is to locate an (invisible) moving entity by using distance-detectors placed at strategical locations. For instance, the metric dimension of a graph GG is the minimum number kk of detectors placed in some vertices {v1,,vk}\{v_1,\cdots,v_k\} such that the vector (d1,,dk)(d_1,\cdots,d_k) of the distances d(vi,r)d(v_i,r) between the detectors and the entity's location rr allows to uniquely determine rV(G)r \in V(G). In a more realistic setting, instead of getting the exact distance information, given devices placed in {v1,,vk}\{v_1,\cdots,v_k\}, we get only relative distances between the entity's location rr and the devices (for every 1i,jk1\leq i,j\leq k, it is provided whether d(vi,r)>d(v_i,r) >, <<, or == to d(vj,r)d(v_j,r)). The centroidal dimension of a graph GG is the minimum number of devices required to locate the entity in this setting. We consider the natural generalization of the latter problem, where vertices may be probed sequentially until the moving entity is located. At every turn, a set {v1,,vk}\{v_1,\cdots,v_k\} of vertices is probed and then the relative distances between the vertices viv_i and the current location rr of the entity are given. If not located, the moving entity may move along one edge. Let ζ(G)\zeta^* (G) be the minimum kk such that the entity is eventually located, whatever it does, in the graph GG. We prove that ζ(T)2\zeta^* (T)\leq 2 for every tree TT and give an upper bound on ζ(GH)\zeta^*(G\square H) in cartesian product of graphs GG and HH. Our main result is that ζ(G)3\zeta^* (G)\leq 3 for any outerplanar graph GG. We then prove that ζ(G)\zeta^* (G) is bounded by the pathwidth of GG plus 1 and that the optimization problem of determining ζ(G)\zeta^* (G) is NP-hard in general graphs. Finally, we show that approximating (up to any constant distance) the entity's location in the Euclidean plane requires at most two vertices per turn

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Pixel and Voxel Representations of Graphs

    Full text link
    We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of. We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for kk-outerplanar graphs with nn vertices, Θ(kn)\Theta(kn) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, Θ(n2)\Theta(n^2) voxels are always sufficient and sometimes necessary for any nn-vertex graph. We improve this bound to Θ(nτ)\Theta(n\cdot \tau) for graphs of treewidth τ\tau and to O((g+1)2nlog2n)O((g+1)^2n\log^2n) for graphs of genus gg. In particular, planar graphs admit representations with O(nlog2n)O(n\log^2n) voxels

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    Object Recognition from very few Training Examples for Enhancing Bicycle Maps

    Full text link
    In recent years, data-driven methods have shown great success for extracting information about the infrastructure in urban areas. These algorithms are usually trained on large datasets consisting of thousands or millions of labeled training examples. While large datasets have been published regarding cars, for cyclists very few labeled data is available although appearance, point of view, and positioning of even relevant objects differ. Unfortunately, labeling data is costly and requires a huge amount of work. In this paper, we thus address the problem of learning with very few labels. The aim is to recognize particular traffic signs in crowdsourced data to collect information which is of interest to cyclists. We propose a system for object recognition that is trained with only 15 examples per class on average. To achieve this, we combine the advantages of convolutional neural networks and random forests to learn a patch-wise classifier. In the next step, we map the random forest to a neural network and transform the classifier to a fully convolutional network. Thereby, the processing of full images is significantly accelerated and bounding boxes can be predicted. Finally, we integrate data of the Global Positioning System (GPS) to localize the predictions on the map. In comparison to Faster R-CNN and other networks for object recognition or algorithms for transfer learning, we considerably reduce the required amount of labeled data. We demonstrate good performance on the recognition of traffic signs for cyclists as well as their localization in maps.Comment: Submitted to IV 2018. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualization and Social Computing
    corecore