6,960 research outputs found

    Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection

    Full text link
    To assure that an autonomous car is driving safely on public roads, its object detection module should not only work correctly, but show its prediction confidence as well. Previous object detectors driven by deep learning do not explicitly model uncertainties in the neural network. We tackle with this problem by presenting practical methods to capture uncertainties in a 3D vehicle detector for Lidar point clouds. The proposed probabilistic detector represents reliable epistemic uncertainty and aleatoric uncertainty in classification and localization tasks. Experimental results show that the epistemic uncertainty is related to the detection accuracy, whereas the aleatoric uncertainty is influenced by vehicle distance and occlusion. The results also show that we can improve the detection performance by 1%-5% by modeling the aleatoric uncertainty.Comment: Accepted to present in the 21st IEEE International Conference on Intelligent Transportation Systems (ITSC 2018

    Gaussian Processes with Context-Supported Priors for Active Object Localization

    Full text link
    We devise an algorithm using a Bayesian optimization framework in conjunction with contextual visual data for the efficient localization of objects in still images. Recent research has demonstrated substantial progress in object localization and related tasks for computer vision. However, many current state-of-the-art object localization procedures still suffer from inaccuracy and inefficiency, in addition to failing to provide a principled and interpretable system amenable to high-level vision tasks. We address these issues with the current research. Our method encompasses an active search procedure that uses contextual data to generate initial bounding-box proposals for a target object. We train a convolutional neural network to approximate an offset distance from the target object. Next, we use a Gaussian Process to model this offset response signal over the search space of the target. We then employ a Bayesian active search for accurate localization of the target. In experiments, we compare our approach to a state-of-theart bounding-box regression method for a challenging pedestrian localization task. Our method exhibits a substantial improvement over this baseline regression method.Comment: 10 pages, 4 figure
    • …
    corecore