3,828 research outputs found

    Boundedness in languages of infinite words

    Full text link
    We define a new class of languages of ω\omega-words, strictly extending ω\omega-regular languages. One way to present this new class is by a type of regular expressions. The new expressions are an extension of ω\omega-regular expressions where two new variants of the Kleene star L∗L^* are added: LBL^B and LSL^S. These new exponents are used to say that parts of the input word have bounded size, and that parts of the input can have arbitrarily large sizes, respectively. For instance, the expression (aBb)ω(a^Bb)^\omega represents the language of infinite words over the letters a,ba,b where there is a common bound on the number of consecutive letters aa. The expression (aSb)ω(a^Sb)^\omega represents a similar language, but this time the distance between consecutive bb's is required to tend toward the infinite. We develop a theory for these languages, with a focus on decidability and closure. We define an equivalent automaton model, extending B\"uchi automata. The main technical result is a complementation lemma that works for languages where only one type of exponent---either LBL^B or LSL^S---is used. We use the closure and decidability results to obtain partial decidability results for the logic MSOLB, a logic obtained by extending monadic second-order logic with new quantifiers that speak about the size of sets

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Weak MSO+U with Path Quantifiers over Infinite Trees

    Full text link
    This paper shows that over infinite trees, satisfiability is decidable for weak monadic second-order logic extended by the unbounding quantifier U and quantification over infinite paths. The proof is by reduction to emptiness for a certain automaton model, while emptiness for the automaton model is decided using profinite trees.Comment: version of an ICALP 2014 paper with appendice

    Regular Cost Functions, Part I: Logic and Algebra over Words

    Full text link
    The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values "inside" and "outside". This theory is a continuation of the works on distance automata and similar models. These models of automata have been successfully used for solving the star-height problem, the finite power property, the finite substitution problem, the relative inclusion star-height problem and the boundedness problem for monadic-second order logic over words. Our notion of regularity can be -- as in the classical theory of regular languages -- equivalently defined in terms of automata, expressions, algebraic recognisability, and by a variant of the monadic second-order logic. These equivalences are strict extensions of the corresponding classical results. The present paper introduces the cost monadic logic, the quantitative extension to the notion of monadic second-order logic we use, and show that some problems of existence of bounds are decidable for this logic. This is achieved by introducing the corresponding algebraic formalism: stabilisation monoids.Comment: 47 page

    Queries with Guarded Negation (full version)

    Full text link
    A well-established and fundamental insight in database theory is that negation (also known as complementation) tends to make queries difficult to process and difficult to reason about. Many basic problems are decidable and admit practical algorithms in the case of unions of conjunctive queries, but become difficult or even undecidable when queries are allowed to contain negation. Inspired by recent results in finite model theory, we consider a restricted form of negation, guarded negation. We introduce a fragment of SQL, called GN-SQL, as well as a fragment of Datalog with stratified negation, called GN-Datalog, that allow only guarded negation, and we show that these query languages are computationally well behaved, in terms of testing query containment, query evaluation, open-world query answering, and boundedness. GN-SQL and GN-Datalog subsume a number of well known query languages and constraint languages, such as unions of conjunctive queries, monadic Datalog, and frontier-guarded tgds. In addition, an analysis of standard benchmark workloads shows that most usage of negation in SQL in practice is guarded negation

    Dense-Timed Petri Nets: Checking Zenoness, Token liveness and Boundedness

    Get PDF
    We consider Dense-Timed Petri Nets (TPN), an extension of Petri nets in which each token is equipped with a real-valued clock and where the semantics is lazy (i.e., enabled transitions need not fire; time can pass and disable transitions). We consider the following verification problems for TPNs. (i) Zenoness: whether there exists a zeno-computation from a given marking, i.e., an infinite computation which takes only a finite amount of time. We show decidability of zenoness for TPNs, thus solving an open problem from [Escrig et al.]. Furthermore, the related question if there exist arbitrarily fast computations from a given marking is also decidable. On the other hand, universal zenoness, i.e., the question if all infinite computations from a given marking are zeno, is undecidable. (ii) Token liveness: whether a token is alive in a marking, i.e., whether there is a computation from the marking which eventually consumes the token. We show decidability of the problem by reducing it to the coverability problem, which is decidable for TPNs. (iii) Boundedness: whether the size of the reachable markings is bounded. We consider two versions of the problem; namely semantic boundedness where only live tokens are taken into consideration in the markings, and syntactic boundedness where also dead tokens are considered. We show undecidability of semantic boundedness, while we prove that syntactic boundedness is decidable through an extension of the Karp-Miller algorithm.Comment: 61 pages, 18 figure
    • …
    corecore