29,327 research outputs found

    A Collaborative Mechanism for Crowdsourcing Prediction Problems

    Full text link
    Machine Learning competitions such as the Netflix Prize have proven reasonably successful as a method of "crowdsourcing" prediction tasks. But these competitions have a number of weaknesses, particularly in the incentive structure they create for the participants. We propose a new approach, called a Crowdsourced Learning Mechanism, in which participants collaboratively "learn" a hypothesis for a given prediction task. The approach draws heavily from the concept of a prediction market, where traders bet on the likelihood of a future event. In our framework, the mechanism continues to publish the current hypothesis, and participants can modify this hypothesis by wagering on an update. The critical incentive property is that a participant will profit an amount that scales according to how much her update improves performance on a released test set.Comment: Full version of the extended abstract which appeared in NIPS 201

    Information Aggregation in Exponential Family Markets

    Full text link
    We consider the design of prediction market mechanisms known as automated market makers. We show that we can design these mechanisms via the mold of \emph{exponential family distributions}, a popular and well-studied probability distribution template used in statistics. We give a full development of this relationship and explore a range of benefits. We draw connections between the information aggregation of market prices and the belief aggregation of learning agents that rely on exponential family distributions. We develop a very natural analysis of the market behavior as well as the price equilibrium under the assumption that the traders exhibit risk aversion according to exponential utility. We also consider similar aspects under alternative models, such as when traders are budget constrained

    Privacy and Truthful Equilibrium Selection for Aggregative Games

    Full text link
    We study a very general class of games --- multi-dimensional aggregative games --- which in particular generalize both anonymous games and weighted congestion games. For any such game that is also large, we solve the equilibrium selection problem in a strong sense. In particular, we give an efficient weak mediator: a mechanism which has only the power to listen to reported types and provide non-binding suggested actions, such that (a) it is an asymptotic Nash equilibrium for every player to truthfully report their type to the mediator, and then follow its suggested action; and (b) that when players do so, they end up coordinating on a particular asymptotic pure strategy Nash equilibrium of the induced complete information game. In fact, truthful reporting is an ex-post Nash equilibrium of the mediated game, so our solution applies even in settings of incomplete information, and even when player types are arbitrary or worst-case (i.e. not drawn from a common prior). We achieve this by giving an efficient differentially private algorithm for computing a Nash equilibrium in such games. The rates of convergence to equilibrium in all of our results are inverse polynomial in the number of players nn. We also apply our main results to a multi-dimensional market game. Our results can be viewed as giving, for a rich class of games, a more robust version of the Revelation Principle, in that we work with weaker informational assumptions (no common prior), yet provide a stronger solution concept (ex-post Nash versus Bayes Nash equilibrium). In comparison to previous work, our main conceptual contribution is showing that weak mediators are a game theoretic object that exist in a wide variety of games -- previously, they were only known to exist in traffic routing games

    Multi-outcome and Multidimensional Market Scoring Rules

    Full text link
    Hanson's market scoring rules allow us to design a prediction market that still gives useful information even if we have an illiquid market with a limited number of budget-constrained agents. Each agent can "move" the current price of a market towards their prediction. While this movement still occurs in multi-outcome or multidimensional markets we show that no market-scoring rule, under reasonable conditions, always moves the price directly towards beliefs of the agents. We present a modified version of a market scoring rule for budget-limited traders, and show that it does have the property that, from any starting position, optimal trade by a budget-limited trader will result in the market being moved towards the trader's true belief. This mechanism also retains several attractive strategic properties of the market scoring rule

    Planning effectual growth: a study of effectuations and causation in nascent firms

    Get PDF
    Two main contrasting approaches are used in the entrepreneurship literature to explain how new ventures strategize: causal/planned strategies and effectual/emergent strategies. In this study, we explore the use of these strategies within micro and small firms. Our results show that larger companies typically used more planned strategies while simultaneously relying on effectual mechanisms. We observe that companies operating in known markets, anchoring their business ideas on experience and having a strong growth intention grow larger. This suggests that causal and effectual mechanisms can co-exist and lead to growth when combined. Theoretical and practical implications of these findings are discussed
    • …
    corecore