535 research outputs found

    Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions

    Get PDF
    Attribute-based encryption (ABE) enables encryption of messages under access policies so that only users with attributes satisfying the policy can decrypt the ciphertext. In standard ABE, an arbitrary number of colluding users, each without an authorized attribute set, cannot decrypt the ciphertext. However, all existing ABE schemes rely on concrete cryptographic assumptions such as the hardness of certain problems over bilinear maps or integer lattices. Furthermore, it is known that ABE cannot be constructed from generic assumptions such as public-key encryption using black-box techniques. In this work, we revisit the problem of constructing ABE that tolerates collusions of arbitrary but a priori bounded size. We present an ABE scheme secure against bounded collusions that requires only semantically secure public-key encryption. Our scheme achieves significant improvement in the size of the public parameters, secret keys, and ciphertexts over the previous construction of bounded-collusion ABE from minimal assumptions by Gorbunov et al. (CRYPTO 2012). We also obtain bounded-collusion symmetric-key ABE (which requires the secret key for encryption) by replacing the public-key encryption with symmetric-key encryption, which can be built from the minimal assumption of one-way functions

    Watermarking Public-Key Cryptographic Primitives

    Get PDF
    A software watermarking scheme enables users to embed a message or mark within a program while preserving its functionality. Moreover, it is difficult for an adversary to remove a watermark from a marked program without corrupting its behavior. Existing constructions of software watermarking from standard assumptions have focused exclusively on watermarking pseudorandom functions (PRFs). In this work, we study watermarking public-key primitives such as the signing key of a digital signature scheme or the decryption key of a public-key (predicate) encryption scheme. While watermarking public-key primitives might seem more challenging than watermarking PRFs, we show how to construct watermarkable variants of these notions while only relying on standard, and oftentimes, minimal, assumptions. Our watermarkable signature scheme relies only on the minimal assumption that one-way functions exist and satisfies ideal properties such as public marking, public mark-extraction, and full collusion resistance. Our watermarkable public-key encryption schemes are built using techniques developed for the closely-related problem of traitor tracing. Notably, we obtain fully collusion resistant watermarkable attribute-based encryption in the private-key setting from the standard learning with errors assumption and a bounded collusion resistant watermarkable predicate encryption scheme with public mark-extraction and public marking from the minimal assumption that public-key encryption exists

    Hierarchical Functional Encryption

    Get PDF
    Functional encryption provides fine-grained access control for encrypted data, allowing each user to learn only specific functions of the encrypted data. We study the notion of hierarchical functional encryption, which augments functional encryption with delegation capabilities, offering significantly more expressive access control. We present a generic transformation that converts any general-purpose public-key functional encryption scheme into a hierarchical one without relying on any additional assumptions. This significantly refines our understanding of the power of functional encryption, showing that the existence of functional encryption is equivalent to that of its hierarchical generalization. Instantiating our transformation with the existing functional encryption schemes yields a variety of hierarchical schemes offering various trade-offs between their delegation capabilities (i.e., the depth and width of their hierarchical structures) and underlying assumptions. When starting with a scheme secure against an unbounded number of collusions, we can support arbitrary hierarchical structures. In addition, even when starting with schemes that are secure against a bounded number of collusions (which are known to exist under rather minimal assumptions such as the existence of public-key encryption and shallow pseudorandom generators), we can support hierarchical structures of bounded depth and width

    Efficient Public Trace and Revoke from Standard Assumptions

    Get PDF
    We provide efficient constructions for trace-and-revoke systems with public traceability in the black-box confirmation model. Our constructions achieve adaptive security, are based on standard assumptions and achieve significant efficiency gains compared to previous constructions. Our constructions rely on a generic transformation from inner product functional encryption (IPFE) schemes to trace-and-revoke systems. Our transformation requires the underlying IPFE scheme to only satisfy a very weak notion of security -- the attacker may only request a bounded number of random keys -- in contrast to the standard notion of security where she may request an unbounded number of arbitrarily chosen keys. We exploit the much weaker security model to provide a new construction for bounded collusion and random key IPFE from the learning with errors assumption (LWE), which enjoys improved efficiency compared to the scheme of Agrawal et al. [CRYPTO'16]. Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from LWE, Decision Diffie Hellman and Decision Composite Residuosity

    Anonymous and Adaptively Secure Revocable IBE with Constant Size Public Parameters

    Full text link
    In Identity-Based Encryption (IBE) systems, key revocation is non-trivial. This is because a user's identity is itself a public key. Moreover, the private key corresponding to the identity needs to be obtained from a trusted key authority through an authenticated and secrecy protected channel. So far, there exist only a very small number of revocable IBE (RIBE) schemes that support non-interactive key revocation, in the sense that the user is not required to interact with the key authority or some kind of trusted hardware to renew her private key without changing her public key (or identity). These schemes are either proven to be only selectively secure or have public parameters which grow linearly in a given security parameter. In this paper, we present two constructions of non-interactive RIBE that satisfy all the following three attractive properties: (i) proven to be adaptively secure under the Symmetric External Diffie-Hellman (SXDH) and the Decisional Linear (DLIN) assumptions; (ii) have constant-size public parameters; and (iii) preserve the anonymity of ciphertexts---a property that has not yet been achieved in all the current schemes

    Attribute-based encryption implies identity-based encryption

    Get PDF
    In this study, the author formally proves that designing attribute-based encryption schemes cannot be easier than designing identity-based encryption schemes. In more detail, they show how an attribute-based encryption scheme which admits, at least, and policies can be combined with a collision-resistant hash function to obtain an identity-based encryption scheme. Even if this result may seem natural, not surprising at all, it has not been explicitly written anywhere, as far as they know. Furthermore, it may be an unknown result for some people: Odelu et al. in 2016 and 2017 have proposed both an attribute-based encryption scheme in the discrete logarithm setting, without bilinear pairings, and an attribute-based encryption scheme in the RSA setting, both admitting and policies. If these schemes were secure, then by using the implication proved in this study, one would obtain secure identity-based encryption schemes in both the RSA and the discrete logarithm settings, without bilinear pairings, which would be a breakthrough in the area. Unfortunately, the author presents here complete attacks of the two schemes proposed by Odelu et al.Postprint (updated version

    Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

    Full text link
    Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy expertsComment: To appear in the Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2019, Issue

    Public Key Encryption with Secure Key Leasing

    Full text link
    We introduce the notion of public key encryption with secure key leasing (PKE-SKL). Our notion supports the leasing of decryption keys so that a leased key achieves the decryption functionality but comes with the guarantee that if the quantum decryption key returned by a user passes a validity test, then the user has lost the ability to decrypt. Our notion is similar in spirit to the notion of secure software leasing (SSL) introduced by Ananth and La Placa (Eurocrypt 2021) but captures significantly more general adversarial strategies. In more detail, our adversary is not restricted to use an honest evaluation algorithm to run pirated software. Our results can be summarized as follows: 1. Definitions: We introduce the definition of PKE with secure key leasing and formalize security notions. 2. Constructing PKE with Secure Key Leasing: We provide a construction of PKE-SKL by leveraging a PKE scheme that satisfies a new security notion that we call consistent or inconsistent security against key leasing attacks (CoIC-KLA security). We then construct a CoIC-KLA secure PKE scheme using 1-key Ciphertext-Policy Functional Encryption (CPFE) that in turn can be based on any IND-CPA secure PKE scheme. 3. Identity Based Encryption, Attribute Based Encryption and Functional Encryption with Secure Key Leasing: We provide definitions of secure key leasing in the context of advanced encryption schemes such as identity based encryption (IBE), attribute-based encryption (ABE) and functional encryption (FE). Then we provide constructions by combining the above PKE-SKL with standard IBE, ABE and FE schemes.Comment: 68 pages, 4 figures. added related works and a comparison with a concurrent work (2023-04-07
    • …
    corecore