12,430 research outputs found

    Bounded variability of metric temporal logic

    Get PDF

    Bounded variability of metric temporal logic

    Get PDF
    Deciding validity of Metric Temporal Logic (MTL) formulas is generally very complex and even undecidable over dense time domains; bounded variability is one of the several restrictions that have been proposed to bring decidability back. A temporal model has bounded variability if no more than v events occur over any time interval of length V, for constant parameters v and V. Previous work has shown that MTL validity over models with bounded variability is less complex—and often decidable—than MTL validity over unconstrained models. This paper studies the related problem of deciding whether an MTL formula has intrinsic bounded variability, that is whether it is satisfied only by models with bounded variability. The results of the paper are mainly negative: over dense time domains, the problem is mostly undecidable (even if with an undecidability degree that is typically lower than deciding validity); over discrete time domains, it is decidable with the same complexity as deciding validity. As a partial complement to these negative results, the paper also identifies MTL fragments where deciding bounded variability is simpler than validity, which may provide for a reduction in complexity in some practical cases

    On Relaxing Metric Information in Linear Temporal Logic

    Get PDF
    This paper studies the equi-satisfiability of metric linear temporal logic (LTL) and its qualitative subset. Metric LTL formulas rely on the next operator to encode distances, whereas qualitative LTL formulas use only the until modality. The paper shows how to transform any metric LTL formula M into a qualitative one Q, such that Q and M are equi-satisfiable over words with variability bounded with respect to the largest distances used in M (i.e., occurrences of next), but the size of Q is independent of such distances. Besides the theoretical interest, these results may help simplify the verification of systems with time-granularity heterogeneity, where large distances are required to express the coarse-grain dynamic

    Satisfiability Checking of Multi-Variable TPTL with Unilateral Intervals Is PSPACE-Complete

    Full text link
    We investigate the decidability of the 0,{0,\infty} fragment of Timed Propositional Temporal Logic (TPTL). We show that the satisfiability checking of TPTL0,^{0,\infty} is PSPACE-complete. Moreover, even its 1-variable fragment (1-TPTL0,^{0,\infty}) is strictly more expressive than Metric Interval Temporal Logic (MITL) for which satisfiability checking is EXPSPACE complete. Hence, we have a strictly more expressive logic with computationally easier satisfiability checking. To the best of our knowledge, TPTL0,^{0,\infty} is the first multi-variable fragment of TPTL for which satisfiability checking is decidable without imposing any bounds/restrictions on the timed words (e.g. bounded variability, bounded time, etc.). The membership in PSPACE is obtained by a reduction to the emptiness checking problem for a new "non-punctual" subclass of Alternating Timed Automata with multiple clocks called Unilateral Very Weak Alternating Timed Automata (VWATA0,^{0,\infty}) which we prove to be in PSPACE. We show this by constructing a simulation equivalent non-deterministic timed automata whose number of clocks is polynomial in the size of the given VWATA0,^{0,\infty}.Comment: Accepted in Concur 202

    On Relaxing Metric Information in Linear Temporal Logic

    Full text link
    Metric LTL formulas rely on the next operator to encode time distances, whereas qualitative LTL formulas use only the until operator. This paper shows how to transform any metric LTL formula M into a qualitative formula Q, such that Q is satisfiable if and only if M is satisfiable over words with variability bounded with respect to the largest distances used in M (i.e., occurrences of next), but the size of Q is independent of such distances. Besides the theoretical interest, this result can help simplify the verification of systems with time-granularity heterogeneity, where large distances are required to express the coarse-grain dynamics in terms of fine-grain time units.Comment: Minor change

    Deciding the Satisfiability of MITL Specifications

    Get PDF
    In this paper we present a satisfiability-preserving reduction from MITL interpreted over finitely-variable continuous behaviors to Constraint LTL over clocks, a variant of CLTL that is decidable, and for which an SMT-based bounded satisfiability checker is available. The result is a new complete and effective decision procedure for MITL. Although decision procedures for MITL already exist, the automata-based techniques they employ appear to be very difficult to realize in practice, and, to the best of our knowledge, no implementation currently exists for them. A prototype tool for MITL based on the encoding presented here has, instead, been implemented and is publicly available.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    On the decidability and complexity of Metric Temporal Logic over finite words

    Full text link
    Metric Temporal Logic (MTL) is a prominent specification formalism for real-time systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with non-primitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL--which includes invariance and time-bounded response properties--is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature

    A Theory of Sampling for Continuous-time Metric Temporal Logic

    Full text link
    This paper revisits the classical notion of sampling in the setting of real-time temporal logics for the modeling and analysis of systems. The relationship between the satisfiability of Metric Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time signals capture the semantics of MTL formulas over the two time domains. The main results apply to "flat" formulas that do not nest temporal operators and can be applied to the problem of reducing the verification problem for MTL over continuous-time models to the same problem over discrete-time, resulting in an automated partial practically-efficient discretization technique.Comment: Revised version, 43 pages
    corecore