62,057 research outputs found

    Discriminative Distance-Based Network Indices with Application to Link Prediction

    Full text link
    In large networks, using the length of shortest paths as the distance measure has shortcomings. A well-studied shortcoming is that extending it to disconnected graphs and directed graphs is controversial. The second shortcoming is that a huge number of vertices may have exactly the same score. The third shortcoming is that in many applications, the distance between two vertices not only depends on the length of shortest paths, but also on the number of shortest paths. In this paper, first we develop a new distance measure between vertices of a graph that yields discriminative distance-based centrality indices. This measure is proportional to the length of shortest paths and inversely proportional to the number of shortest paths. We present algorithms for exact computation of the proposed discriminative indices. Second, we develop randomized algorithms that precisely estimate average discriminative path length and average discriminative eccentricity and show that they give (ϵ,δ)(\epsilon,\delta)-approximations of these indices. Third, we perform extensive experiments over several real-world networks from different domains. In our experiments, we first show that compared to the traditional indices, discriminative indices have usually much more discriminability. Then, we show that our randomized algorithms can very precisely estimate average discriminative path length and average discriminative eccentricity, using only few samples. Then, we show that real-world networks have usually a tiny average discriminative path length, bounded by a constant (e.g., 2). Fourth, in order to better motivate the usefulness of our proposed distance measure, we present a novel link prediction method, that uses discriminative distance to decide which vertices are more likely to form a link in future, and show its superior performance compared to the well-known existing measures

    SIR epidemics with long range infection in one dimension

    Full text link
    We study epidemic processes with immunization on very large 1-dimensional lattices, where at least some of the infections are non-local, with rates decaying as power laws p(x) ~ x^{-sigma-1} for large distances x. When starting with a single infected site, the cluster of infected sites stays always bounded if σ>1\sigma >1 (and dies with probability 1, of its size is allowed to fluctuate down to zero), but the process can lead to an infinite epidemic for sigma <1. For sigma <0 the behavior is essentially of mean field type, but for 0 < sigma <= 1 the behavior is non-trivial, both for the critical and for supercritical cases. For critical epidemics we confirm a previous prediction that the critical exponents controlling the correlation time and the correlation length are simply related to each other, and we verify detailed field theoretic predictions for sigma --> 1/3. For sigma = 1 we find generic power laws with continuously varying exponents even in the supercritical case, and confirm in detail the predicted Kosterlitz-Thouless nature of the transition. Finally, the mass N(t) of supercritical clusters seems to grow for 0 < sigma < 1 like a stretched exponential. The latter implies that networks embedded in 1-d space with power-behaved link distributions have infinite intrinsic dimension (based on the graph distance), but are not small world.Comment: 16 pages, including 28 figures; minor changes from version v

    Maximizing Friend-Making Likelihood for Social Activity Organization

    Full text link
    The social presence theory in social psychology suggests that computer-mediated online interactions are inferior to face-to-face, in-person interactions. In this paper, we consider the scenarios of organizing in person friend-making social activities via online social networks (OSNs) and formulate a new research problem, namely, Hop-bounded Maximum Group Friending (HMGF), by modeling both existing friendships and the likelihood of new friend making. To find a set of attendees for socialization activities, HMGF is unique and challenging due to the interplay of the group size, the constraint on existing friendships and the objective function on the likelihood of friend making. We prove that HMGF is NP-Hard, and no approximation algorithm exists unless P = NP. We then propose an error-bounded approximation algorithm to efficiently obtain the solutions very close to the optimal solutions. We conduct a user study to validate our problem formulation and per- form extensive experiments on real datasets to demonstrate the efficiency and effectiveness of our proposed algorithm

    Opinion and community formation in coevolving networks

    Full text link
    In human societies opinion formation is mediated by social interactions, consequently taking place on a network of relationships and at the same time influencing the structure of the network and its evolution. To investigate this coevolution of opinions and social interaction structure we develop a dynamic agent-based network model, by taking into account short range interactions like discussions between individuals, long range interactions like a sense for overall mood modulated by the attitudes of individuals, and external field corresponding to outside influence. Moreover, individual biases can be naturally taken into account. In addition the model includes the opinion dependent link-rewiring scheme to describe network topology coevolution with a slower time scale than that of the opinion formation. With this model comprehensive numerical simulations and mean field calculations have been carried out and they show the importance of the separation between fast and slow time scales resulting in the network to organize as well-connected small communities of agents with the same opinion.Comment: 10 pages, 5 figures. New inset for Fig. 1 and references added. Submitted to Physical Review
    • …
    corecore