187 research outputs found

    Hierarchical control of complex manufacturing processes

    Get PDF
    The need for changing the control objective during the process has been reported in many systems in manufacturing, robotics, etc. However, not many works have been devoted to systematically investigating the proper strategies for these types of problems. In this dissertation, two approaches to such problems have been suggested for fast varying systems. The first approach, addresses problems where some of the objectives are statically related to the states of the systems. Hierarchical Optimal Control was proposed to simplify the nonlinearity caused by adding the statically related objectives into control problem. The proposed method was implemented for contour-position control of motion systems as well as force-position control of end milling processes. It was shown for a motion control system, when contour tracking is important, the controller can reduce the contour error even when the axial control signals are saturating. Also, for end milling processes it was shown that during machining sharp edges where, excessive cutting forces can cause tool breakage, by using the proposed controller, force can be bounded without sacrificing the position tracking performance. The second approach that was proposed (Hierarchical Model Predictive Control), addressed the problems where all the objectives are dynamically related. In this method neural network approximation methods were used to convert a nonlinear optimization problem into an explicit form which is feasible for real time implementation. This method was implemented for force-velocity control of ram based freeform extrusion fabrication of ceramics. Excellent extrusion results were achieved with the proposed method showing excellent performance for different changes in control objective during the process --Abstract, page iv

    Flexible manufacturing system utilizing computer integrated control and modeling

    Get PDF
    In today\u27s fast-automated production, Flexible Manufacturing Systems (FMS) play a very important role by processing a variety of different types of workpieces simultaneously. This study provides valuable information about existing FMS workcells and brings to light a unique concept called Programmable Automation. Another integrated concept of programmable automation that is discussed is the use of two feasibility approaches towards modeling and controlling FMS operations; the most commonly used is programmable logic controllers (PLC), and the other one, which has not yet implemented in many industrial applications is Petri Net controllers (PN). This latter method is a unique powerful technique to study and analyze any production line or any facility, and it can be used in many other applications of automatic control. Programmable Automation uses a processor in conventional metal working machines to perform certain tasks through program instructions. Drilling, milling and chamfering machines are good examples for such automation. Keeping the above issues in concem; this research focuses on other core components that are used in the FMS workcell at New Jersey Institute of Technology, such as; industrial robots, material handling system and finally computer vision

    Error Analysis and Adaptive-Robust Control of a 6-DoF Parallel Robot with Ball-Screw Drive Actuators

    Get PDF
    Parallel kinematic machines (PKMs) are commonly used for tasks that require high precision and stiffness. In this sense, the rigidity of the drive system of the robot, which is composed of actuators and transmissions, plays a fundamental role. In this paper, ball-screw drive actuators are considered and a 6-degree of freedom (DoF) parallel robot with prismatic actuated joints is used as application case. A mathematical model of the ball-screw drive is proposed considering the most influencing sources of nonlinearity: sliding-dependent flexibility, backlash, and friction. Using this model, the most critical poses of the robot with respect to the kinematic mapping of the error from the joint- to the task-space are systematically investigated to obtain the workspace positional and rotational resolution, apart from control issues. Finally, a nonlinear adaptive-robust control algorithm for trajectory tracking, based on the minimization of the tracking error, is described and simulated

    Design and Development of a Twisted String Exoskeleton Robot for the Upper Limb

    Get PDF
    High-intensity and task-specific upper-limb treatment of active, highly repetitive movements are the effective approaches for patients with motor disorders. However, with the severe shortage of medical service in the United States and the fact that post-stroke survivors can continue to incur significant financial costs, patients often choose not to return to the hospital or clinic for complete recovery. Therefore, robot-assisted therapy can be considered as an alternative rehabilitation approach because the similar or better results as the patients who receive intensive conventional therapy offered by professional physicians.;The primary objective of this study was to design and fabricate an effective mobile assistive robotic system that can provide stroke patients shoulder and elbow assistance. To reduce the size of actuators and to minimize the weight that needs to be carried by users, two sets of dual twisted-string actuators, each with 7 strands (1 neutral and 6 effective) were used to extend/contract the adopted strings to drive the rotational movements of shoulder and elbow joints through a Bowden cable mechanism. Furthermore, movements of non-disabled people were captured as templates of training trajectories to provide effective rehabilitation.;The specific aims of this study included the development of a two-degree-of-freedom prototype for the elbow and shoulder joints, an adaptive robust control algorithm with cross-coupling dynamics that can compensate for both nonlinear factors of the system and asynchronization between individual actuators as well as an approach for extracting the reference trajectories for the assistive robotic from non-disabled people based on Microsoft Kinect sensor and Dynamic time warping algorithm. Finally, the data acquisition and control system of the robot was implemented by Intel Galileo and XILINX FPGA embedded system

    Modeling and Control of Piezoelectric Actuators

    Get PDF
    Piezoelectric actuators (PEAs) utilize the inverse piezoelectric effect to generate fine displacement with a resolution down to sub-nanometers and as such, they have been widely used in various micro- and nanopositioning applications. However, the modeling and control of PEAs have proven to be challenging tasks. The main difficulties lie in the existence of various nonlinear or difficult-to-model effects in PEAs, such as hysteresis, creep, and distributive vibration dynamics. Such effects can seriously degrade the PEA tracking control performances or even lead to instability. This raises a great need to model and control PEAs for improved performance. This research is aimed at developing novel models for PEAs and on this basis, developing model-based control schemes for the PEA tracking control taking into account the aforementioned nonlinear effects. In the first part of this research, a model of a PEA for the effects of hysteresis, creep, and vibration dynamics was developed. Notably, the widely-used Preisach hysteresis model cannot represent the one-sided hysteresis of PEAs. To overcome this shortcoming, a rate-independent hysteresis model based on a novel hysteresis operator modified from the Preisach hysteresis operator was developed, which was then integrated with the models of creep and vibration dynamics to form a comprehensive model for PEAs. For its validation, experiments were carried out on a commercially-available PEA and the results obtained agreed with those from model simulations. By taking into account the linear dynamics and hysteretic behavior of the PEA as well as the presliding friction between the moveable platform and the end-effector, a model of the piezoelectric-driven stick-slip (PDSS) actuator was also developed in the first part of the research. The effectiveness of the developed model was illustrated by the experiments on the PDSS actuator prototyped in the author's lab. In the second part of the research, control schemes were developed based on the aforementioned PEA models for tracking control of PEAs. Firstly, a novel PID-based sliding mode (PIDSM) controller was developed. The rational behind the use of a sliding mode (SM) control is that the SM control can effectively suppress the effects of matched uncertainties, while the PEA hysteresis, creep, and external load can be represented by a lumped matched uncertainty based on the developed model. To solve the chattering and steady-state problems, associated with the ideal SM control and the SM control with boundary layer (SMCBL), the novel PIDSM control developed in the present study replaces the switching control term in the ideal SM control schemes with a PID regulator. Experiments were carried out on a commercially-available PEA and the results obtained illustrate the effectiveness of the PIDSM controller, and its superiorities over other schemes of PID control, ideal SM control, and the SMCBL in terms of steady state error elimination, chattering suppression, and tracking error suppression. Secondly, a PIDSM observer was also developed based on the model of PEAs to provide the PIDSM controller with state estimates of the PEA. And the PIDSM controller and the PIDSM observer were combined to form an integrated control scheme (PIDSM observer-controller or PIDSMOC) for PEAs. The effectiveness of the PIDSM observer and the PIDSMOC were also validated experimentally. The superiority of the PIDSMOC over the PIDSM controller with σ-β filter control scheme was also analyzed and demonstrated experimentally. The significance of this research lies in the development of novel models for PEAs and PDSS actuators, which can be of great help in the design and control of such actuators. Also, the development of the PIDSM controller, the PIDSM observer, and their integrated form, i.e., PIDSMOC, enables the improved performance of tracking control of PEAs with the presence of various nonlinear or difficult-to-model effects

    Learning robotic milling strategies based on passive variable operational space interaction control

    Full text link
    This paper addresses the problem of robotic cutting during disassembly of products for materials separation and recycling. Waste handling applications differ from milling in manufacturing processes, as they engender considerable variety and uncertainty in the parameters (e.g. hardness) of materials which the robot must cut. To address this challenge, we propose a learning-based approach incorporating elements of interaction control, in which the robot can adapt key parameters, such as feed rate, depth of cut, and mechanical compliance during task execution. We show how a mathematical model of cutting mechanics, embedded in a simulation environment, can be used to rapidly train the system without needing large amounts of data from physical cutting trials. The simulation approach was validated on a real robot setup based on four case study materials with varying structural and mechanical properties. We demonstrate the proposed method minimises process force and path deviations to a level similar to offline optimal planning methods, while the average time to complete a cutting task is within 25% of the optimum, at the expense of reduced volume of material removed per pass. A key advantage of our approach over similar works is that no prior knowledge about the material is required.Comment: 15 pages, 14 figures, accepted for publication in IEEE Transactions on Automation Science and Engineering (T-ASE

    Accuracy Enhancement for High Precision Gantry Stage

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Telerobotic rendezvous and docking vision system architecture

    Get PDF
    This research program has successfully demonstrated a new target label architecture that allows a microcomputer to determine the position, orientation, and identity of an object. It contains a CAD-like database with specific geometric information about the object for approach, grasping, and docking maneuvers. Successful demonstrations were performed selecting and docking an ORU box with either of two ORU receptacles. Small, but significant differences were seen in the two camera types used in the program, and camera sensitive program elements have been identified. The software has been formatted into a new co-autonomy system which provides various levels of operator interaction and promises to allow effective application of telerobotic systems while code improvements are continuing
    corecore