905 research outputs found

    A Metric Encoding for Bounded Model Checking (extended version)

    Full text link
    In Bounded Model Checking both the system model and the checked property are translated into a Boolean formula to be analyzed by a SAT-solver. We introduce a new encoding technique which is particularly optimized for managing quantitative future and past metric temporal operators, typically found in properties of hard real time systems. The encoding is simple and intuitive in principle, but it is made more complex by the presence, typical of the Bounded Model Checking technique, of backward and forward loops used to represent an ultimately periodic infinite domain by a finite structure. We report and comment on the new encoding technique and on an extensive set of experiments carried out to assess its feasibility and effectiveness

    Boolean Satisfiability in Electronic Design Automation

    No full text
    Boolean Satisfiability (SAT) is often used as the underlying model for a significant and increasing number of applications in Electronic Design Automation (EDA) as well as in many other fields of Computer Science and Engineering. In recent years, new and efficient algorithms for SAT have been developed, allowing much larger problem instances to be solved. SAT “packages” are currently expected to have an impact on EDA applications similar to that of BDD packages since their introduction more than a decade ago. This tutorial paper is aimed at introducing the EDA professional to the Boolean satisfiability problem. Specifically, we highlight the use of SAT models to formulate a number of EDA problems in such diverse areas as test pattern generation, circuit delay computation, logic optimization, combinational equivalence checking, bounded model checking and functional test vector generation, among others. In addition, we provide an overview of the algorithmic techniques commonly used for solving SAT, including those that have seen widespread use in specific EDA applications. We categorize these algorithmic techniques, indicating which have been shown to be best suited for which tasks

    A Decidable Timeout based Extension of Propositional Linear Temporal Logic

    Full text link
    We develop a timeout based extension of propositional linear temporal logic (which we call TLTL) to specify timing properties of timeout based models of real time systems. TLTL formulas explicitly refer to a running global clock together with static timing variables as well as a dynamic variable abstracting the timeout behavior. We extend LTL with the capability to express timeout constraints. From the expressiveness view point, TLTL is not comparable with important known clock based real-time logics including TPTL, XCTL, and MTL, i.e., TLTL can specify certain properties, which cannot be specified in these logics (also vice-versa). We define a corresponding timeout tableau for satisfiability checking of the TLTL formulas. Also a model checking algorithm over timeout Kripke structure is presented. Further we prove that the validity checking for such an extended logic remains PSPACE-complete even in the presence of timeout constraints and infinite state models. Under discrete time semantics, with bounded timeout increments, the model-checking problem that if a TLTL-formula holds in a timeout Kripke structure is also PSPACE complete. We further prove that when TLTL is interpreted over discrete time, it can be embedded in the monadic second order logic with time, and when TLTL is interpreted over dense time without the condition of non-zenoness, the resulting logic becomes ÎŁ11\Sigma_1^1-complete

    Boolean satisfiability in electronic design automation

    Full text link

    Software Model Checking with Explicit Scheduler and Symbolic Threads

    Full text link
    In many practical application domains, the software is organized into a set of threads, whose activation is exclusive and controlled by a cooperative scheduling policy: threads execute, without any interruption, until they either terminate or yield the control explicitly to the scheduler. The formal verification of such software poses significant challenges. On the one side, each thread may have infinite state space, and might call for abstraction. On the other side, the scheduling policy is often important for correctness, and an approach based on abstracting the scheduler may result in loss of precision and false positives. Unfortunately, the translation of the problem into a purely sequential software model checking problem turns out to be highly inefficient for the available technologies. We propose a software model checking technique that exploits the intrinsic structure of these programs. Each thread is translated into a separate sequential program and explored symbolically with lazy abstraction, while the overall verification is orchestrated by the direct execution of the scheduler. The approach is optimized by filtering the exploration of the scheduler with the integration of partial-order reduction. The technique, called ESST (Explicit Scheduler, Symbolic Threads) has been implemented and experimentally evaluated on a significant set of benchmarks. The results demonstrate that ESST technique is way more effective than software model checking applied to the sequentialized programs, and that partial-order reduction can lead to further performance improvements.Comment: 40 pages, 10 figures, accepted for publication in journal of logical methods in computer scienc

    On the decidability and complexity of Metric Temporal Logic over finite words

    Full text link
    Metric Temporal Logic (MTL) is a prominent specification formalism for real-time systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with non-primitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL--which includes invariance and time-bounded response properties--is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature

    Satisfiability Checking of Multi-Variable TPTL with Unilateral Intervals Is PSPACE-Complete

    Get PDF
    • 

    corecore