53 research outputs found

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations---restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that, in cases where the combined complexity is of relevance, approaching CTL model checking by parallelism cannot be expected to result in any significant speedup. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL+, and ECTL+

    New results on pushdown module checking with imperfect information

    Full text link
    Model checking of open pushdown systems (OPD) w.r.t. standard branching temporal logics (pushdown module checking or PMC) has been recently investigated in the literature, both in the context of environments with perfect and imperfect information about the system (in the last case, the environment has only a partial view of the system's control states and stack content). For standard CTL, PMC with imperfect information is known to be undecidable. If the stack content is assumed to be visible, then the problem is decidable and 2EXPTIME-complete (matching the complexity of PMC with perfect information against CTL). The decidability status of PMC with imperfect information against CTL restricted to the case where the depth of the stack content is visible is open. In this paper, we show that with this restriction, PMC with imperfect information against CTL remains undecidable. On the other hand, we individuate an interesting subclass of OPDS with visible stack content depth such that PMC with imperfect information against the existential fragment of CTL is decidable and in 2EXPTIME. Moreover, we show that the program complexity of PMC with imperfect information and visible stack content against CTL is 2EXPTIME-complete (hence, exponentially harder than the program complexity of PMC with perfect information, which is known to be EXPTIME-complete).Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Modal mu-calculi

    Get PDF

    On the Satisfiability of Temporal Logics with Concrete Domains

    Get PDF
    Temporal logics are a very popular family of logical languages, used to specify properties of abstracted systems. In the last few years, many extensions of temporal logics have been proposed, in order to address the need to express more than just abstract properties. In our work we study temporal logics extended by local constraints, which allow to express quantitative properties on data values from an arbitrary relational structure called the concrete domain. An example of concrete domain can be (Z, <, =), where the integers are considered as a relational structure over the binary order relation and the equality relation. Formulas of temporal logics with constraints are evaluated on data-words or data-trees, in which each node or position is labeled by a vector of data from the concrete domain. We call the constraints local because they can only compare values at a fixed distance inside such models. Several positive results regarding the satisfiability of LTL (linear temporal logic) with constraints over the integers have been established in the past years, while the corresponding results for branching time logics were only partial. In this work we prove that satisfiability of CTL* (computation tree logic) with constraints over the integers is decidable and also lift this result to ECTL*, a proper extension of CTL*. We also consider other classes of concrete domains, particularly ones that are \"tree-like\". We consider semi-linear orders, ordinal trees and trees of a fixed height, and prove decidability in this framework as well. At the same time we prove that our method cannot be applied in the case of the infinite binary tree or the infinitely branching infinite tree. We also look into extending the expressiveness of our logic adding non-local constraints, and find that this leads to undecidability of the satisfiability problem, even on very simple domains like (Z, <, =). We then find a way to restrict the power of the non-local constraints to regain decidability

    Zielonka's Recursive Algorithm: dull, weak and solitaire games and tighter bounds

    Full text link
    Dull, weak and nested solitaire games are important classes of parity games, capturing, among others, alternation-free mu-calculus and ECTL* model checking problems. These classes can be solved in polynomial time using dedicated algorithms. We investigate the complexity of Zielonka's Recursive algorithm for solving these special games, showing that the algorithm runs in O(d (n + m)) on weak games, and, somewhat surprisingly, that it requires exponential time to solve dull games and (nested) solitaire games. For the latter classes, we provide a family of games G, allowing us to establish a lower bound of 2^(n/3). We show that an optimisation of Zielonka's algorithm permits solving games from all three classes in polynomial time. Moreover, we show that there is a family of (non-special) games M that permits us to establish a lower bound of 2^(n/3), improving on the previous lower bound for the algorithm.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    From AADL to Timed Abstract State Machines: A Verified Model Transformation

    Get PDF
    International audienceArchitecture Analysis and Design Language (AADL) is an architecture description language standard for embedded real-time systems widely used in the avionics and aerospace industry to model safety-critical applications. To verify and analyze the AADL models, model transformation technologies are often used to automatically extract a formal specification suitable for analysis and verification. In this process, it remains a challenge to prove that the model transformation preserves the semantics of the initial AADL model or, at least, some of the specific properties or requirements it needs to satisfy. This paper presents a machine checked semantics-preserving transformation of a subset of AADL (including periodic threads, data port communications, mode changes, and the AADL behavior annex) into Timed Abstract State Machines (TASM). The AADL standard itself lacks at present a formal semantics to make this translation validation possible. Our contribution is to bridge this gap by providing two formal semantics for the subset of AADL. The execution semantics provided by the AADL standard is formalized as Timed Transition Systems (TTS). This formalization gives a reference expression of AADL semantics which can be compared with the TASM-based translation (for verification purpose). Finally, the verified transformation is mechanized in the theorem prover Coq

    On the Expressive Power of the Normal Form for Branching-Time Temporal logics

    Get PDF
    With the emerging applications that involve complex distributed systems branching-time specifications are specifically important as they reflect dynamic and non-deterministic nature of such applications. We describe the expressive power of a simple yet powerful branching-time specification framework – branching-time normal form, which has been developed as part of clausal resolution for branching-time temporal logics. We show the encoding of B¹uchi Tree Automata in the language of the normal form, thus representing, syntactically, tree automata in a high-level way. Thus we can treat BNF as a normal form for the latter. These results enable us (1) to translate given problem specifications into the normal form and apply as a verification method a deductive reasoning technique – the clausal temporal resolution; (2) to apply one of the core components of the resolution method - the loop searching to extract, syntactically, hidden invariants in a wide range of complex temporal specifications

    Model Checking the Logic of Allen's Relations Meets and Started-by is P^NP-Complete

    Get PDF
    In the plethora of fragments of Halpern and Shoham's modal logic of time intervals (HS), the logic AB of Allen's relations Meets and Started-by is at a central position. Statements that may be true at certain intervals, but at no sub-interval of them, such as accomplishments, as well as metric constraints about the length of intervals, that force, for instance, an interval to be at least (resp., at most, exactly) k points long, can be expressed in AB. Moreover, over the linear order of the natural numbers N, it subsumes the (point-based) logic LTL, as it can easily encode the next and until modalities. Finally, it is expressive enough to capture the {\omega}-regular languages, that is, for each {\omega}-regular expression R there exists an AB formula {\phi} such that the language defined by R coincides with the set of models of {\phi} over N. It has been shown that the satisfiability problem for AB over N is EXPSPACE-complete. Here we prove that, under the homogeneity assumption, its model checking problem is {\Delta}^p_2 = P^NP-complete (for the sake of comparison, the model checking problem for full HS is EXPSPACE-hard, and the only known decision procedure is nonelementary). Moreover, we show that the modality for the Allen relation Met-by can be added to AB at no extra cost (AA'B is P^NP-complete as well)
    • 

    corecore