9,432 research outputs found

    Fluid flow queue models for fixed-mobile network evaluation

    Get PDF
    A methodology for fast and accurate end-to-end KPI, like throughput and delay, estimation is proposed based on the service-centric traffic flow analysis and the fluid flow queuing model named CURSA-SQ. Mobile network features, like shared medium and mobility, are considered defining the models to be taken into account such as the propagation models and the fluid flow scheduling model. The developed methodology provides accurate computation of these KPIs, while performing orders of magnitude faster than discrete event simulators like ns-3. Finally, this methodology combined to its capacity for performance estimation in MPLS networks enables its application for near real-time converged fixed-mobile networks operation as it is proven in three use case scenarios

    Robust And Optimal Opportunistic Scheduling For Downlink 2-Flow Network Coding With Varying Channel Quality and Rate Adaptation

    Get PDF
    This paper considers the downlink traffic from a base station to two different clients. When assuming infinite backlog, it is known that inter-session network coding (INC) can significantly increase the throughput of each flow. However, the corresponding scheduling solution (when assuming dynamic arrivals instead and requiring bounded delay) is still nascent. For the 2-flow downlink scenario, we propose the first opportunistic INC + scheduling solution that is provably optimal for time-varying channels, i.e., the corresponding stability region matches the optimal Shannon capacity. Specifically, we first introduce a new binary INC operation, which is distinctly different from the traditional wisdom of XORing two overheard packets. We then develop a queue-length-based scheduling scheme, which, with the help of the new INC operation, can robustly and optimally adapt to time-varying channel quality. We then show that the proposed algorithm can be easily extended for rate adaptation and it again robustly achieves the optimal throughput. A byproduct of our results is a scheduling scheme for stochastic processing networks (SPNs) with random departure, which relaxes the assumption of deterministic departure in the existing results. The new SPN scheduler could thus further broaden the applications of SPN scheduling to other real-world scenarios
    • 

    corecore