241 research outputs found

    Guaranteed Inertia Functions in Dynamical Games.

    Get PDF
    This paper deals with inertia functions in control theory introduced in Aubin, Bernardo and Saint-Pierre (2004, 2005) and their adaptation to dynamical games. The inertia function associates with any initial state-control pair the smallest of the worst norms over time of the velocities of the controls regulating viable evolutions. For tychastic systems (parameterized systems where the parameters are tyches, disturbances, perturbations, etc.), the palicinesia of a tyche measure the worst norm over time of the velocities of the tyches. The palicinesia function is the largest palicinesia threshold c such that all evolutions with palicinesia smaller than or equal to c are viable. For dynamical games where one parameter is the control and the other one is a tyche (games against nature or robust control), we define the guaranteed inertia function associated with any initial state-control-tyche triple the best of the worst of the norms of the velocities of the controls and of the tyches and study their properties. Viability Characterizations and Hamilton-Jacobi equations of which these inertia and palicinesia functions are solutions are provided.Viability; dynamical games; inertia function; Tychastic systems; palicinesia;

    Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty.

    Get PDF
    We use in this chapter the viability/capturability approach for studying the problem of dynamic valuation and management of a portfolio with transaction costs in the framework of tychastic control systems (or dynamical games against nature) instead of stochastic control systems. Indeed, the very definition of the guaranteed valuation set can be formulated directly in terms of guaranteed viable-capture basin of a dynamical game. Hence, we shall “compute” the guaranteed viable-capture basin and find a formula for the valuation function involving an underlying criterion, use the tangential properties of such basins for proving that the valuation function is a solution to Hamilton-Jacobi-Isaacs partial differential equations. We then derive a dynamical feedback providing an adjustment law regulating the evolution of the portfolios obeying viability constraints until it achieves the given objective in finite time. We shall show that the Pujal—Saint-Pierre viability/capturability algorithm applied to this specific case provides both the valuation function and the associated portfolios.dynamic games; dynamic valuation; tychastic control systems; management of portfolio;

    Differential games through viability theory : old and recent results.

    Get PDF
    This article is devoted to a survey of results for differential games obtained through Viability Theory. We recall the basic theory for differential games (obtained in the 1990s), but we also give an overview of recent advances in the following areas : games with hard constraints, stochastic differential games, and hybrid differential games. We also discuss several applications.Game theory; Differential game; viability algorithm;

    Path-dependent Hamilton-Jacobi equations in infinite dimensions

    Full text link
    We propose notions of minimax and viscosity solutions for a class of fully nonlinear path-dependent PDEs with nonlinear, monotone, and coercive operators on Hilbert space. Our main result is well-posedness (existence, uniqueness, and stability) for minimax solutions. A particular novelty is a suitable combination of minimax and viscosity solution techniques in the proof of the comparison principle. One of the main difficulties, the lack of compactness in infinite-dimensional Hilbert spaces, is circumvented by working with suitable compact subsets of our path space. As an application, our theory makes it possible to employ the dynamic programming approach to study optimal control problems for a fairly general class of (delay) evolution equations in the variational framework. Furthermore, differential games associated to such evolution equations can be investigated following the Krasovskii-Subbotin approach similarly as in finite dimensions.Comment: Final version, 53 pages, to appear in Journal of Functional Analysi

    Non-linear eigenvalue problems arising from growth maximization of positive linear dynamical systems

    Get PDF
    We study a growth maximization problem for a continuous time positive linear system with switches. This is motivated by a problem of mathematical biology (modeling growth-fragmentation processes and the PMCA protocol). We show that the growth rate is determined by the non-linear eigenvalue of a max-plus analogue of the Ruelle-Perron-Frobenius operator, or equivalently, by the ergodic constant of a Hamilton-Jacobi (HJ) partial differential equation, the solutions or subsolutions of which yield Barabanov and extremal norms, respectively. We exploit contraction properties of order preserving flows, with respect to Hilbert's projective metric, to show that the non-linear eigenvector of the operator, or the "weak KAM" solution of the HJ equation, does exist. Low dimensional examples are presented, showing that the optimal control can lead to a limit cycle.Comment: 8 page

    Viability-based computation of spatially constrained minimum time trajectories for an autonomous underwater vehicle: implementation and experiments.

    Get PDF
    A viability algorithm is developed to compute the constrained minimum time function for general dynamical systems. The algorithm is instantiated for a specific dynamics(Dubin’s vehicle forced by a flow field) in order to numerically solve the minimum time problem. With the specific dynamics considered, the framework of hybrid systems enables us to solve the problem efficiently. The algorithm is implemented in C using epigraphical techniques to reduce the dimension of the problem. The feasibility of this optimal trajectory algorithm is tested in an experiment with a Light Autonomous Underwater Vehicle (LAUV) system. The hydrodynamics of the LAUV are analyzed in order to develop a low-dimension vehicle model. Deployment results from experiments performed in the Sacramento River in California are presented, which show good performance of the algorithm.trajectories; underwater vehicle; viability algorithm; hybrid systems; implementation;

    Equilibrium points for Optimal Investment with Vintage Capital

    Full text link
    The paper concerns the study of equilibrium points, namely the stationary solutions to the closed loop equation, of an infinite dimensional and infinite horizon boundary control problem for linear partial differential equations. Sufficient conditions for existence of equilibrium points in the general case are given and later applied to the economic problem of optimal investment with vintage capital. Explicit computation of equilibria for the economic problem in some relevant examples is also provided. Indeed the challenging issue here is showing that a theoretical machinery, such as optimal control in infinite dimension, may be effectively used to compute solutions explicitly and easily, and that the same computation may be straightforwardly repeated in examples yielding the same abstract structure. No stability result is instead provided: the work here contained has to be considered as a first step in the direction of studying the behavior of optimal controls and trajectories in the long run

    Maximum Principle for Linear-Convex Boundary Control Problems applied to Optimal Investment with Vintage Capital

    Full text link
    The paper concerns the study of the Pontryagin Maximum Principle for an infinite dimensional and infinite horizon boundary control problem for linear partial differential equations. The optimal control model has already been studied both in finite and infinite horizon with Dynamic Programming methods in a series of papers by the same author, or by Faggian and Gozzi. Necessary and sufficient optimality conditions for open loop controls are established. Moreover the co-state variable is shown to coincide with the spatial gradient of the value function evaluated along the trajectory of the system, creating a parallel between Maximum Principle and Dynamic Programming. The abstract model applies, as recalled in one of the first sections, to optimal investment with vintage capital

    Set-Valued Analysis, Viability Theory and Partial Differential Inclusions

    Get PDF
    Systems of first-order partial differential inclusions -- solutions of which are feedbacks governing viable trajectories of control systems -- are derived. A variational principle and an existence theorem of a (single-valued contingent) solution to such partial differential inclusions are stated. To prove such theorems, tools of set-valued analysis and tricks taken from viability theory are surveyed. This paper is the text of a plenary conference to the World Congress on Nonlinear Analysis held at Tampa, Florida, August 19-26, 1992
    corecore