8 research outputs found

    Physical Modeling of Graphene Nanoribbon Field Effect Transistor Using Non-Equilibrium Green Function Approach for Integrated Circuit Design

    Get PDF
    The driving engine for the exponential growth of digital information processing systems is scaling down the transistor dimensions. For decades, this has enhanced the device performance and density. However, the International Technology Roadmap for Semiconductors (ITRS) states the end of Moore’s law in the next decade due to the scaling challenges of silicon-based CMOS electronics, e.g. extremely high power density. The forward-looking solutions are the utilization of emerging materials and devices for integrated circuits. The Ph.D. dissertation focuses on graphene, one atomic layer of carbon sheet, experimentally discovered in 2004. Since fabrication technology of emerging materials is still in early stages, transistor modeling has been playing an important role for evaluating futuristic graphene-based devices and circuits. The GNR FET has been simulated by solving a numerical quantum transport model based on self-consistent solution of the 3D Poisson equation and 1D Schrödinger equations within the non-equilibrium Green’s function (NEGF) formalism. The quantum transport model fully treats short channel-length electrostatic effects and the quantum tunneling effects, leading to the technology exploration of graphene nanoribbon field effect transistors (GNRFETs) for the future. A comprehensive study of static metrics and switching attributes of GNRFET has been presented including the performance dependence of device characteristics to the GNR width and the scaling of its channel length down to 2.5 nanometer. It has been found that increasing the GNR width deteriorate the off-state performance of the GNRFET, such that, narrower armchair GNRs improved the device robustness to short channel effects, leading to better off-state performance considering smaller off-current, larger ION/IOFF ratio, smaller subthreshold swing and smaller drain-induced barrier-lowering. The wider armchair GNRs allow the scaling of channel length and supply voltage resulting in better on-state performance such as higher drive current, smaller intrinsic gate-delay time and smaller power-delay product. In addition, the width-dependent characteristics of GNR FETs is investigated for two GNR semiconducting families (3p,0) and (3p+1,0). It has been found that the GNRs(3p+1,0) demonstrates superior off-state performance, while, on the other hand, GNRs(3p,0) shows superior on-state performance. Thus, GNRs(3p+1,0) are promising for low-power design, while GNRs(3p,0) indicate a more preferable attribute for high frequency applications

    The Role of the Collisional Broadening of the States on the Low-Field Mobility in Silicon Inversion Layers

    Get PDF
    abstract: Scaling of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) towards shorter channel lengths, has lead to an increasing importance of quantum effects on the device performance. Until now, a semi-classical model based on Monte Carlo method for instance, has been sufficient to address these issues in silicon, and arrive at a reasonably good fit to experimental mobility data. But as the semiconductor world moves towards 10nm technology, many of the basic assumptions in this method, namely the very fundamental Fermi’s golden rule come into question. The derivation of the Fermi’s golden rule assumes that the scattering is infrequent (therefore the long time limit) and the collision duration time is zero. This thesis overcomes some of the limitations of the above approach by successfully developing a quantum mechanical simulator that can model the low-field inversion layer mobility in silicon MOS capacitors and other inversion layers as well. It solves for the scattering induced collisional broadening of the states by accounting for the various scattering mechanisms present in silicon through the non-equilibrium based near-equilibrium Green’s Functions approach, which shall be referred to as near-equilibrium Green’s Function (nEGF) in this work. It adopts a two-loop approach, where the outer loop solves for the self-consistency between the potential and the subband sheet charge density by solving the Poisson and the Schrödinger equations self-consistently. The inner loop solves for the nEGF (renormalization of the spectrum and the broadening of the states), self-consistently using the self-consistent Born approximation, which is then used to compute the mobility using the Green-Kubo Formalism.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Silicon nanowire-based complex structures : A Large-scale atomistic electronic structure and ballistic transport

    Get PDF
    Ankara : The Department of Physics and the Graduate School of Engineering and Science of Bilkent University, 2014.Thesis (Ph. D.) -- Bilkent University, 2014.Includes bibliographical references leaves 94-112.While the hierarchical assembling as well as the dramatic miniaturization of Si nanowires (NWs) are on-going, an understanding of the underlying physics is of great importance to enable custom design of nanostructures tailored to specific functionalities. This work presents a large-scale atomistic insight into the electronic properties of NW-based complex structures, starting from the subsystem level up to the full assembly, within the framework of pseudopotential-based linear combination of bulk bands method. Laying the groundwork by grasping single Si NWs, we get into a large extent an unexplored territory of NW networks and kinked NWs. As one end product, a versatile estimator is introduced for the band gap and band-edge lineups of multiply-crossing Si NWs that is valid for various diameters, number of crossings, and NW alignments. Aiming for an exploration of the low-lying energy landscape, real space wave function analysis is undertaken for tens of states around band edges which reveal underlying features for a variety of crossings. Predominantly, the valence states spread throughout the network, in contrast the conduction minima are largely localized at the crossings. Given the fact that substantial portion of the band edge shift drives from the confined conduction states, branched Si NWs and nanocrystals have quite close band gap values as the networks of similar wire diameters. Further support to wave function analysis is provided via quantum ballistic transport calculations employing the Kubo-Greenwood formalism. The intriguing localization behaviors are identified, springing mainly at the crossings and kinks of NWs. The ballistic transport edge set apart the conducting extended states from the localized-band gap determining ones. Our findings put forward useful information to realize functionality encoded synthesis of NW-based complex structures, both in the bottom-up and top-down fabrication paradigms.Keleş, ÜmitPh.D

    Field-Effect Transistors in Chemically Etched Silicon Nanowires

    No full text
    In recent years, silicon nanowires (SiNW) have generated great interest for the fabrication of nanometre-scale transistors, thermoelectric devices, solar cells, and biological/chemical sensors. SiNWs, with minimum diameter ~10 nm, and lengths up to ~100 μm, may be prepared by a variety of growth, etching and high-resolution lithographic techniques. In particular, metal-assisted chemical etching (MACE) provides a low-cost method of producing large arrays of high aspect ratio SiNWs. This thesis investigates field-effect transistors (FETs) using SiNWs prepared by MACE. Source/drain contacts to the FET are defined by titanium silicide. FETs using large-area back-gates are found to be dominated by Schottky barriers (SB) at the source and drain. The ISD-VSD and ISD-VBG characteristics are determined by thermionic emission across the source SB, which may be lowered by the image-force potential, and by the local electric field generated by the source/drain and gate potentials. These results demonstrate that complete FET operation may be obtained by considering only the effect of SB lowering. An inverted-channel SiNW FET is also presented, where the characteristics are determined by both the contact SBs and the inversion layer in the NW. After subtracting the effect of the SBs from the data, a long-channel MOSFET model is used to find the field-effect electron mobility μFE ~100 cm2/Vs. FETs using parallel arrays of SiNWs are also investigated. These devices show similar source/drain relationship to single SiNW devices, but a weakened gate dependence, attributed to the aggregate response of multiple SiNWs in parallel. Low-temperature measurements of these multi-wire devices from 300K to 20K are used to extract the effective SB heights

    Integrated Circuits/Microchips

    Get PDF
    With the world marching inexorably towards the fourth industrial revolution (IR 4.0), one is now embracing lives with artificial intelligence (AI), the Internet of Things (IoTs), virtual reality (VR) and 5G technology. Wherever we are, whatever we are doing, there are electronic devices that we rely indispensably on. While some of these technologies, such as those fueled with smart, autonomous systems, are seemingly precocious; others have existed for quite a while. These devices range from simple home appliances, entertainment media to complex aeronautical instruments. Clearly, the daily lives of mankind today are interwoven seamlessly with electronics. Surprising as it may seem, the cornerstone that empowers these electronic devices is nothing more than a mere diminutive semiconductor cube block. More colloquially referred to as the Very-Large-Scale-Integration (VLSI) chip or an integrated circuit (IC) chip or simply a microchip, this semiconductor cube block, approximately the size of a grain of rice, is composed of millions to billions of transistors. The transistors are interconnected in such a way that allows electrical circuitries for certain applications to be realized. Some of these chips serve specific permanent applications and are known as Application Specific Integrated Circuits (ASICS); while, others are computing processors which could be programmed for diverse applications. The computer processor, together with its supporting hardware and user interfaces, is known as an embedded system.In this book, a variety of topics related to microchips are extensively illustrated. The topics encompass the physics of the microchip device, as well as its design methods and applications

    21st Century Nanostructured Materials

    Get PDF
    Nanostructured materials (NMs) are attracting interest as low-dimensional materials in the high-tech era of the 21st century. Recently, nanomaterials have experienced breakthroughs in synthesis and industrial and biomedical applications. This book presents recent achievements related to NMs such as graphene, carbon nanotubes, plasmonic materials, metal nanowires, metal oxides, nanoparticles, metamaterials, nanofibers, and nanocomposites, along with their physical and chemical aspects. Additionally, the book discusses the potential uses of these nanomaterials in photodetectors, transistors, quantum technology, chemical sensors, energy storage, silk fibroin, composites, drug delivery, tissue engineering, and sustainable agriculture and environmental applications
    corecore