47,820 research outputs found

    On the port-Hamiltonian representation of systems described by partial differential equations

    Full text link
    We consider infinite dimensional port-Hamiltonian systems. Based on a power balance relation we introduce the port-Hamiltonian system representation where we pay attention to two different scenarios, namely the non-differential operator case and the differential operator case regarding the structural mapping, the dissipation mapping and the in/output mapping. In contrast to the well-known representation on the basis of the underlying Stokes-Dirac structure our approach is not necessarily based on using energy-variables which leads to a different port-Hamiltonian representation of the analyzed partial differential equations.Comment: A definitive version has been published in ifac-papersonline.ne

    Numerical Investigation of Two-Phase Flow through a Fault

    Get PDF
    Imperial Users onl

    The technological mediation of mathematics and its learning

    Get PDF
    This paper examines the extent to which mathematical knowledge, and its related pedagogy, is inextricably linked to the tools – physical, virtual, cultural – in which it is expressed. Our goal is to focus on a few exemplars of computational tools, and to describe with some illustrative examples, how mathematical meanings are shaped by their use. We begin with an appraisal of the role of digital technologies, and our rationale for focusing on them. We present four categories of digital tool-use that distinguish their differing potential to shape mathematical cognition. The four categories are: i. dynamic and graphical tools, ii. tools that outsource processing power, iii. new representational infrastructures, and iv. the implications of highbandwidth connectivity on the nature of mathematics activity. In conclusion, we draw out the implications of this analysis for mathematical epistemology and the mathematical meanings students develop. We also underline the central importance of design, both of the tools themselves and the activities in which they are embedded

    A Manifesto for the Equifinality Thesis.

    Get PDF
    This essay discusses some of the issues involved in the identification and predictions of hydrological models given some calibration data. The reasons for the incompleteness of traditional calibration methods are discussed. The argument is made that the potential for multiple acceptable models as representations of hydrological and other environmental systems (the equifinality thesis) should be given more serious consideration than hitherto. It proposes some techniques for an extended GLUE methodology to make it more rigorous and outlines some of the research issues still to be resolved

    Mass transport in a partially covered fluid-filled cavity

    Get PDF
    A method of computing the concentration field of dissolved material inside an etch-hole is presented. Using a number of assumptions, approximate convection-diffusion equations are formulated, and analytical descriptions for the concentration in different parts of the domain are obtained. By coupling these descriptions the concentration field can be computed. The assumptions and the results are validated by comparison with solutions based on a finite-volume method. Results of the boundary-layer method are given for two characteristic etch-hole geometries. The described boundary-layer method is efficient in terms of computational time and memory, because it does not require the construction of a computational grid in the interior of the domain. This advantage will be exploited in a future paper where the method will be used to simulate wet-chemical etching
    corecore