13,817 research outputs found

    Tagged particle diffusion in one-dimensional systems with Hamiltonian dynamics - II

    Full text link
    We study various temporal correlation functions of a tagged particle in one-dimensional systems of interacting point particles evolving with Hamiltonian dynamics. Initial conditions of the particles are chosen from the canonical thermal distribution. The correlation functions are studied in finite systems, and their forms examined at short and long times. Various one-dimensional systems are studied. Results of numerical simulations for the Fermi-Pasta-Ulam chain are qualitatively similar to results for the harmonic chain, and agree unexpectedly well with a simple description in terms of linearized equations for damped fluctuating sound waves. Simulation results for the alternate mass hard particle gas reveal that - in contradiction to our earlier results [1] with smaller system sizes - the diffusion constant slowly converges to a constant value, in a manner consistent with mode coupling theories. Our simulations also show that the behaviour of the Lennard-Jones gas depends on its density. At low densities, it behaves like a hard-particle gas, and at high densities like an anharmonic chain. In all the systems studied, the tagged particle was found to show normal diffusion asymptotically, with convergence times depending on the system under study. Finite size effects show up at time scales larger than sound traversal times, their nature being system-specific.Comment: 15 pages, 12 figure

    A volume-based hydrodynamic approach to sound wave propagation in a monatomic gas

    Get PDF
    We investigate sound wave propagation in a monatomic gas using a volume-based hydrodynamic model. In Physica A vol 387(24) (2008) pp6079-6094, a microscopic volume-based kinetic approach was proposed by analyzing molecular spatial distributions; this led to a set of hydrodynamic equations incorporating a mass-density diffusion component. Here we find that these new mass-density diffusive flux and volume terms mean that our hydrodynamic model, uniquely, reproduces sound wave phase speed and damping measurements with excellent agreement over the full range of Knudsen number. In the high Knudsen number (high frequency) regime, our volume-based model predictions agree with the plane standing waves observed in the experiments, which existing kinetic and continuum models have great difficulty in capturing. In that regime, our results indicate that the "sound waves" presumed in the experiments may be better thought of as "mass-density waves", rather than the pressure waves of the continuum regime.Comment: Revised to aid clarification (no changes to presented model); typos corrected, figures added, paper title change

    Dominant Reaction Pathways in High Dimensional Systems

    Full text link
    This paper is devoted to the development of a theoretical and computational framework to efficiently sample the statistically significant thermally activated reaction pathways, in multi-dimensional systems obeying Langevin dynamics. We show how to obtain the set of most probable reaction pathways and compute the corrections due to quadratic thermal fluctuations around such trajectories. We discuss how to obtain predictions for the evolution of arbitrary observables and how to generate conformations which are representative of the transition state ensemble. We present an illustrative implementation of our method by studying the diffusion of a point particle in a 2-dimensional funneled external potential.Comment: 18 pages, 7 figures. Improvement in the text and in the figures. Version submitted for publicatio

    Steady advection-diffusion around finite absorbers in two-dimensional potential flows

    Get PDF
    We perform an exhaustive study of the simplest, nontrivial problem in advection-diffusion -- a finite absorber of arbitrary cross section in a steady two-dimensional potential flow of concentrated fluid. This classical problem has been studied extensively in the theory of solidification from a flowing melt, and it also arises in Advection-Diffusion-Limited Aggregation. In both cases, the fundamental object is the flux to a circular disk, obtained by conformal mapping from more complicated shapes. We construct the first accurate numerical solution using an efficient new method, which involves mapping to the interior of the disk and using a spectral method in polar coordinates. Our method also combines exact asymptotics and an adaptive mesh to handle boundary layers. Starting from a well-known integral equation in streamline coordinates, we also derive new, high-order asymptotic expansions for high and low P\'eclet numbers (\Pe). Remarkably, the `high' \Pe expansion remains accurate even for such low \Pe as 10310^{-3}. The two expansions overlap well near \Pe = 0.1, allowing the construction of an analytical connection formula that is uniformly accurate for all \Pe and angles on the disk with a maximum relative error of 1.75%. We also obtain an analytical formula for the Nusselt number (N\Nu) as a function of the P\'eclet number with a maximum relative error of 0.53% for all possible geometries. Because our finite-plate problem can be conformally mapped to other geometries, the general problem of two-dimensional advection-diffusion past an arbitrary finite absorber in a potential flow can be considered effectively solved.Comment: 29 pages, 12 figs (mostly in color

    Effective transient behaviour of inclusions in diffusion problems

    Get PDF
    This paper is concerned with the effective transport properties of heterogeneous media in which there is a high contrast between the phase diffusivities. In this case the transient response of the slow phase induces a memory effect at the macroscopic scale, which needs to be included in a macroscopic continuum description. This paper focuses on the slow phase, which we take as a dispersion of inclusions of arbitrary shape. We revisit the linear diffusion problem in such inclusions in order to identify the structure of the effective (average) inclusion response to a chemical load applied on the inclusion boundary. We identify a chemical creep function (similar to the creep function of viscoelasticity), from which we construct estimates with a reduced number of relaxation modes. The proposed estimates admit an equivalent representation based on a finite number of internal variables. These estimates allow us to predict the average inclusion response under arbitrary time-varying boundary conditions at very low computational cost. A heuristic generalisation to concentration-dependent diffusion coefficient is also presented. The proposed estimates for the effective transient response of an inclusion can serve as a building block for the formulation of multi-inclusion homogenisation schemes.Comment: 24 pages, 9 figures. Submitted to ZAMM (under review

    Thermal conduction in classical low-dimensional lattices

    Full text link
    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable nonlinear systems is briefly discussed. Finally, possible future research themes are outlined.Comment: 90 pages, revised versio

    Semi-classical generalized Langevin equation for equilibrium and nonequilibrium molecular dynamics simulation

    Full text link
    Molecular dynamics (MD) simulation based on Langevin equation has been widely used in the study of structural, thermal properties of matters in difference phases. Normally, the atomic dynamics are described by classical equations of motion and the effect of the environment is taken into account through the fluctuating and frictional forces. Generally, the nuclear quantum effects and their coupling to other degrees of freedom are difficult to include in an efficient way. This could be a serious limitation on its application to the study of dynamical properties of materials made from light elements, in the presence of external driving electrical or thermal fields. One example of such system is single molecular dynamics on metal surface, an important system that has received intense study in surface science. In this review, we summarize recent effort in extending the Langevin MD to include nuclear quantum effect and their coupling to flowing electrical current. We discuss its applications in the study of adsorbate dynamics on metal surface, current-induced dynamics in molecular junctions, and quantum thermal transport between different reservoirs.Comment: 23 pages, 16 figur
    corecore