5,581 research outputs found

    Diameter and Treewidth in Minor-Closed Graph Families

    Full text link
    It is known that any planar graph with diameter D has treewidth O(D), and this fact has been used as the basis for several planar graph algorithms. We investigate the extent to which similar relations hold in other graph families. We show that treewidth is bounded by a function of the diameter in a minor-closed family, if and only if some apex graph does not belong to the family. In particular, the O(D) bound above can be extended to bounded-genus graphs. As a consequence, we extend several approximation algorithms and exact subgraph isomorphism algorithms from planar graphs to other graph families.Comment: 15 pages, 12 figure

    Hitting forbidden minors: Approximation and Kernelization

    Get PDF
    We study a general class of problems called F-deletion problems. In an F-deletion problem, we are asked whether a subset of at most kk vertices can be deleted from a graph GG such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-deletion problem when F contains a planar graph. We give (1) a linear vertex kernel on graphs excluding tt-claw K1,tK_{1,t}, the star with tt leves, as an induced subgraph, where tt is a fixed integer. (2) an approximation algorithm achieving an approximation ratio of O(log3/2OPT)O(\log^{3/2} OPT), where OPTOPT is the size of an optimal solution on general undirected graphs. Finally, we obtain polynomial kernels for the case when F contains graph θc\theta_c as a minor for a fixed integer cc. The graph θc\theta_c consists of two vertices connected by cc parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as {\sc Vertex Cover}, {\sc Feedback Vertex Set} and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    Planar graph coloring avoiding monochromatic subgraphs: trees and paths make things difficult

    Get PDF
    We consider the problem of coloring a planar graph with the minimum number of colors such that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem

    Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

    Get PDF
    The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2O(k)O(n)2^{O(k)} O(n). We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. At the same time, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (SODA '95 / JGAA '99)
    corecore