165 research outputs found

    Navigation of mobile robots using artificial intelligence technique.

    Get PDF
    The ability to acquire a representation of the spatial environment and the ability to localize within it are essential for successful navigation in a-priori unknown environments. This document presents a computer vision method and related algorithms for the navigation of a robot in a static environment. Our environment is a simple white colored area with black obstacles and robot (with some identification mark-a circle and a rectangle of orange color which helps in giving it a direction) present over it. This environment is grabbed in a camera which sends image to the desktop using data cable. The image is then converted to the binary format from jpeg format using software which is then processed in the computer using MATLAB. The data acquired from the program is then used as an input for another program which controls the robot drive motors using wireless controls. Robot then tries to reach its destination avoiding obstacles in its path. The algorithm presented in this paper uses the distance transform methodology to generate paths for the robot to execute. This paper describes an algorithm for approximately finding the fastest route for a vehicle to travel one point to a destination point in a digital plain map, avoiding obstacles along the way. In our experimental setup the camera used is a SONY HANDYCAM. This camera grabs the image and specifies the location of the robot (starting point) in the plain and its destination point. The destination point used in our experimental setup is a table tennis ball, but it can be any other entity like a single person, a combat unit or a vehicle

    Anisotropic screen space rendering for particle-based fluid simulation

    Get PDF
    This paper proposes a real-time fluid rendering method based on the screen space rendering scheme for particle-based fluid simulation. Our method applies anisotropic transformations to the point sprites to stretch the point sprites along appropriate axes, obtaining smooth fluid surfaces based on the weighted principal components analysis of the particle distribution. Then we combine the processed anisotropic point sprite information with popular screen space filters like curvature flow and narrow-range filters to process the depth information. Experiments show that the proposed method can efficiently resolve the issues of jagged edges and unevenness on the surface that existed in previous methods while preserving sharp high-frequency details

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with
    corecore