1,622 research outputs found

    Hybrid PDE solver for data-driven problems and modern branching

    Full text link
    The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for nonlinear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully nonlinear case and open research questions.Comment: 23 pages, 7 figures; Final SMUR version; To appear in the European Journal of Applied Mathematics (EJAM

    The Vanishing Moment Method for Fully Nonlinear Second Order Partial Differential Equations: Formulation, Theory, and Numerical Analysis

    Full text link
    The vanishing moment method was introduced by the authors in [37] as a reliable methodology for computing viscosity solutions of fully nonlinear second order partial differential equations (PDEs), in particular, using Galerkin-type numerical methods such as finite element methods, spectral methods, and discontinuous Galerkin methods, a task which has not been practicable in the past. The crux of the vanishing moment method is the simple idea of approximating a fully nonlinear second order PDE by a family (parametrized by a small parameter \vepsi) of quasilinear higher order (in particular, fourth order) PDEs. The primary objectives of this book are to present a detailed convergent analysis for the method in the radial symmetric case and to carry out a comprehensive finite element numerical analysis for the vanishing moment equations (i.e., the regularized fourth order PDEs). Abstract methodological and convergence analysis frameworks of conforming finite element methods and mixed finite element methods are first developed for fully nonlinear second order PDEs in general settings. The abstract frameworks are then applied to three prototypical nonlinear equations, namely, the Monge-Amp\`ere equation, the equation of prescribed Gauss curvature, and the infinity-Laplacian equation. Numerical experiments are also presented for each problem to validate the theoretical error estimate results and to gauge the efficiency of the proposed numerical methods and the vanishing moment methodology.Comment: 141 pages, 16 figure

    A Neumann interface optimal control problem with elliptic PDE constraints and its discretization and numerical analysis

    Full text link
    We study an optimal control problem governed by elliptic PDEs with interface, which the control acts on the interface. Due to the jump of the coefficient across the interface and the control acting on the interface, the regularity of solution of the control problem is limited on the whole domain, but smoother on subdomains. The control function with pointwise inequality constraints is served as the flux jump condition which we called Neumann interface control. We use a simple uniform mesh that is independent of the interface. The standard linear finite element method can not achieve optimal convergence when the uniform mesh is used. Therefore the state and adjoint state equations are discretized by piecewise linear immersed finite element method (IFEM). While the accuracy of the piecewise constant approximation of the optimal control on the interface is improved by a postprocessing step which possesses superconvergence properties; as well as the variational discretization concept for the optimal control is used to improve the error estimates. Optimal error estimates for the control, suboptimal error estimates for state and adjoint state are derived. Numerical examples with and without constraints are provided to illustrate the effectiveness of the proposed scheme and correctness of the theoretical analysis.Comment: 31pages, 12 figures, 4 table
    • …
    corecore