2,204 research outputs found

    An effective spectral collocation method for the direct solution of high-order ODEs

    Get PDF
    This paper reports a new Chebyshev spectral collocation method for directly solving high-order ordinary differential equations (ODEs). The construction of the Chebyshev approximations is based on integration rather than conventional differentiation. This use of integration allows the multiple boundary conditions to be incorporated more efficiently. Numerical results show that the proposed formulation significantly improves the conditioning of the system and yields more accurate results and faster convergence rates than conventional formulations

    Transmutations and spectral parameter power series in eigenvalue problems

    Full text link
    We give an overview of recent developments in Sturm-Liouville theory concerning operators of transmutation (transformation) and spectral parameter power series (SPPS). The possibility to write down the dispersion (characteristic) equations corresponding to a variety of spectral problems related to Sturm-Liouville equations in an analytic form is an attractive feature of the SPPS method. It is based on a computation of certain systems of recursive integrals. Considered as families of functions these systems are complete in the L2L_{2}-space and result to be the images of the nonnegative integer powers of the independent variable under the action of a corresponding transmutation operator. This recently revealed property of the Delsarte transmutations opens the way to apply the transmutation operator even when its integral kernel is unknown and gives the possibility to obtain further interesting properties concerning the Darboux transformed Schr\"{o}dinger operators. We introduce the systems of recursive integrals and the SPPS approach, explain some of its applications to spectral problems with numerical illustrations, give the definition and basic properties of transmutation operators, introduce a parametrized family of transmutation operators, study their mapping properties and construct the transmutation operators for Darboux transformed Schr\"{o}dinger operators.Comment: 30 pages, 4 figures. arXiv admin note: text overlap with arXiv:1111.444

    Dirac Hamiltonian with superstrong Coulomb field

    Full text link
    We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge ZeZe. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=Ī±āˆ’1=137% Z=\alpha ^{-1}=137 based on the fact that the standard expression for the lower bound state energy yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is a non uniqueness of the self-adjoint Hamiltonian, but this non uniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=(3āˆ’1=118Z=(\sqrt{3}% /2)\alpha ^{-1}=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamiltonians. The methods used are the methods of the theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals. The relation of the constructed one-particle quantum mechanics to the real physics of electrons in superstrong Coulomb fields where multiparticle effects may be of crucial importance is an open question.Comment: 44 pages, LaTex file, to be published in Teor.Mat.Fiz. (Theor.Math.Phys.

    A frequency-independent solver for systems of first order linear ordinary differential equations

    Full text link
    When a system of first order linear ordinary differential equations has eigenvalues of large magnitude, its solutions exhibit complicated behaviour, such as high-frequency oscillations, rapid growth or rapid decay. The cost of representing such solutions using standard techniques typically grows with the magnitudes of the eigenvalues. As a consequence, the running times of standard solvers for ordinary differential equations also grow with the size of these eigenvalues. The solutions of scalar equations with slowly-varying coefficients, however, can be efficiently represented via slowly-varying phase functions, regardless of the magnitudes of the eigenvalues of the corresponding coefficient matrix. Here, we couple an existing solver for scalar equations which exploits this observation with a well-known technique for transforming a system of linear ordinary differential equations into scalar form. The result is a method for solving a large class of systems of linear ordinary differential equations in time independent of the magnitudes of the eigenvalues of their coefficient matrices. We discuss the results of numerical experiments demonstrating the properties of our algorithm.Comment: arXiv admin note: text overlap with arXiv:2308.0328

    Pseudospectral Calculation of Helium Wave Functions, Expectation Values, and Oscillator Strength

    Full text link
    The pseudospectral method is a powerful tool for finding highly precise solutions of Schr\"{o}dinger's equation for few-electron problems. We extend the method's scope to wave functions with non-zero angular momentum and test it on several challenging problems. One group of tests involves the determination of the nonrelativistic electric dipole oscillator strength for the helium 111^1S ā†’21\to 2^1P transition. The result achieved, 0.27616499(27)0.27616499(27), is comparable to the best in the literature. Another group of test applications is comprised of well-studied leading order finite nuclear mass and relativistic corrections for the helium ground state. A straightforward computation reaches near state-of-the-art accuracy without requiring the implementation of any special-purpose numerics. All the relevant quantities tested in this paper -- energy eigenvalues, S-state expectation values and bound-bound dipole transitions for S and P states -- converge exponentially with increasing resolution and do so at roughly the same rate. Each individual calculation samples and weights the configuration space wave function uniquely but all behave in a qualitatively similar manner. Quantum mechanical matrix elements are directly and reliably calculable with pseudospectral methods. The technical discussion includes a prescription for choosing coordinates and subdomains to achieve exponential convergence when two-particle Coulomb singularities are present. The prescription does not account for the wave function's non-analytic behavior near the three-particle coalescence which should eventually hinder the rate of the convergence. Nonetheless the effect is small in the sense that ignoring the higher-order coalescence does not appear to affect adversely the accuracy of any of the quantities reported nor the rate at which errors diminish.Comment: 24 pages, 12 figures, 6 tables. To be submitted to Physical Review A. LANL identifier 'LA-UR-11-10986

    Characterization of the functionally graded shear modulus of a half-space

    Get PDF
    In this article, a method is proposed for determining parameters of the exponentialy varying shear modulus of a functionally graded half-space. The method is based on the analytical solution of the problem of pure shear of an elastic functionally graded half-space by a strip punch. The half-space has the depth-wise exponential variation of its shear modulus, whose parameters are to be determined. The problem is reduced to an integral equation that is then solved by asymptotic methods. The analytical relations for contact stress under the punch, displacement of the free surface outside the contact area and other characteristics of the problem are studied with respect to the shear modulus parameters. The parameters of the functionally graded half-space shear modulus are determined (a) from the coincidence of theoretical and experimental values of contact stresses under the punch and from the coincidence of forces acting on the punch, or (b) from the coincidence of theoretical and experimental values of displacement of the free surface of the half-space outside the contact and coincidence of forces acting on the punch, or (c) from other conditions. The transcendental equations for determination of the shear modulus parameters in cases (a) and (b) are given. By adjusting the parameters of the shear modulus variation, the regions of "approximate-homogeneous" state in the functionally graded half-space are developed
    • ā€¦
    corecore