349 research outputs found

    Survey of Error Concealment techniques: Research directions and open issues

    Full text link
    © 2015 IEEE. Error Concealment (EC) techniques use either spatial, temporal or a combination of both types of information to recover the data lost in transmitted video. In this paper, existing EC techniques are reviewed, which are divided into three categories, namely Intra-frame EC, Inter-frame EC, and Hybrid EC techniques. We first focus on the EC techniques developed for the H.264/AVC standard. The advantages and disadvantages of these EC techniques are summarized with respect to the features in H.264. Then, the EC algorithms are also analyzed. These EC algorithms have been recently adopted in the newly introduced H.265/HEVC standard. A performance comparison between the classic EC techniques developed for H.264 and H.265 is performed in terms of the average PSNR. Lastly, open issues in the EC domain are addressed for future research consideration

    Video modeling via implicit motion representations

    Get PDF
    Video modeling refers to the development of analytical representations for explaining the intensity distribution in video signals. Based on the analytical representation, we can develop algorithms for accomplishing particular video-related tasks. Therefore video modeling provides us a foundation to bridge video data and related-tasks. Although there are many video models proposed in the past decades, the rise of new applications calls for more efficient and accurate video modeling approaches.;Most existing video modeling approaches are based on explicit motion representations, where motion information is explicitly expressed by correspondence-based representations (i.e., motion velocity or displacement). Although it is conceptually simple, the limitations of those representations and the suboptimum of motion estimation techniques can degrade such video modeling approaches, especially for handling complex motion or non-ideal observation video data. In this thesis, we propose to investigate video modeling without explicit motion representation. Motion information is implicitly embedded into the spatio-temporal dependency among pixels or patches instead of being explicitly described by motion vectors.;Firstly, we propose a parametric model based on a spatio-temporal adaptive localized learning (STALL). We formulate video modeling as a linear regression problem, in which motion information is embedded within the regression coefficients. The coefficients are adaptively learned within a local space-time window based on LMMSE criterion. Incorporating a spatio-temporal resampling and a Bayesian fusion scheme, we can enhance the modeling capability of STALL on more general videos. Under the framework of STALL, we can develop video processing algorithms for a variety of applications by adjusting model parameters (i.e., the size and topology of model support and training window). We apply STALL on three video processing problems. The simulation results show that motion information can be efficiently exploited by our implicit motion representation and the resampling and fusion do help to enhance the modeling capability of STALL.;Secondly, we propose a nonparametric video modeling approach, which is not dependent on explicit motion estimation. Assuming the video sequence is composed of many overlapping space-time patches, we propose to embed motion-related information into the relationships among video patches and develop a generic sparsity-based prior for typical video sequences. First, we extend block matching to more general kNN-based patch clustering, which provides an implicit and distributed representation for motion information. We propose to enforce the sparsity constraint on a higher-dimensional data array signal, which is generated by packing the patches in the similar patch set. Then we solve the inference problem by updating the kNN array and the wanted signal iteratively. Finally, we present a Bayesian fusion approach to fuse multiple-hypothesis inferences. Simulation results in video error concealment, denoising, and deartifacting are reported to demonstrate its modeling capability.;Finally, we summarize the proposed two video modeling approaches. We also point out the perspectives of implicit motion representations in applications ranging from low to high level problems

    Frame Interpolation for Cloud-Based Mobile Video Streaming

    Full text link
    © 2016 IEEE. Cloud-based High Definition (HD) video streaming is becoming popular day by day. On one hand, it is important for both end users and large storage servers to store their huge amount of data at different locations and servers. On the other hand, it is becoming a big challenge for network service providers to provide reliable connectivity to the network users. There have been many studies over cloud-based video streaming for Quality of Experience (QoE) for services like YouTube. Packet losses and bit errors are very common in transmission networks, which affect the user feedback over cloud-based media services. To cover up packet losses and bit errors, Error Concealment (EC) techniques are usually applied at the decoder/receiver side to estimate the lost information. This paper proposes a time-efficient and quality-oriented EC method. The proposed method considers H.265/HEVC based intra-encoded videos for the estimation of whole intra-frame loss. The main emphasis in the proposed approach is the recovery of Motion Vectors (MVs) of a lost frame in real-time. To boost-up the search process for the lost MVs, a bigger block size and searching in parallel are both considered. The simulation results clearly show that our proposed method outperforms the traditional Block Matching Algorithm (BMA) by approximately 2.5 dB and Frame Copy (FC) by up to 12 dB at a packet loss rate of 1%, 3%, and 5% with different Quantization Parameters (QPs). The computational time of the proposed approach outperforms the BMA by approximately 1788 seconds

    An investigation into the requirements for an efficient image transmission system over an ATM network

    Get PDF
    This thesis looks into the problems arising in an image transmission system when transmitting over an A TM network. Two main areas were investigated: (i) an alternative coding technique to reduce the bit rate required; and (ii) concealment of errors due to cell loss, with emphasis on processing in the transform domain of DCT-based images. [Continues.

    Edge-guided image gap interpolation using multi-scale transformation

    Get PDF
    This paper presents improvements in image gap restoration through the incorporation of edge-based directional interpolation within multi-scale pyramid transforms. Two types of image edges are reconstructed: 1) the local edges or textures, inferred from the gradients of the neighboring pixels and 2) the global edges between image objects or segments, inferred using a Canny detector. Through a process of pyramid transformation and downsampling, the image is progressively transformed into a series of reduced size layers until at the pyramid apex the gap size is one sample. At each layer, an edge skeleton image is extracted for edge-guided interpolation. The process is then reversed; from the apex, at each layer, the missing samples are estimated (an iterative method is used in the last stage of upsampling), up-sampled, and combined with the available samples of the next layer. Discrete cosine transform and a family of discrete wavelet transforms are utilized as alternatives for pyramid construction. Evaluations over a range of images, in regular and random loss pattern, at loss rates of up to 40%, demonstrate that the proposed method improves peak-signal-to-noise-ratio by 1–5 dB compared with a range of best-published works

    Error concealment techniques for H.264/MVC encoded sequences

    Get PDF
    This work is partially funded by the Strategic Educational Pathways Scholarship Scheme (STEPS-Malta). This scholarship is partly financed by the European Union–European Social Fund (ESF 1.25).The H.264/MVC standard offers good compression ratios for multi-view sequences by exploiting spatial, temporal and interview image dependencies. This works well in error-free channels, however in the event of transmission errors, it leads to the propagation of the distorted macro-blocks, degrading the quality of experience of the user. This paper reviews the state-of-the-art error concealment solutions and proposes a low complexity concealment method that can be used with multi-view video coding. The error resilience techniques used to aid error concealment are also identified. Results obtained demonstrate that good multi-view video reconstruction can be obtained with this approach.peer-reviewe

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods
    corecore