8,087 research outputs found

    Null Surfaces and Legendre Submanifolds

    Full text link
    It is shown that the main variable Z of the Null Surface Formulation of GR is the generating function of a constrained Lagrange submanifold that lives on the energy surface H=0 and that its level surfaces Z=const. are Legendre submanifolds on that energy surface. The behaviour of the variable Z at the caustic points is analysed and a genralization of this variable is discussed.Comment: 28 pages, 7 figure

    BRST theory without Hamiltonian and Lagrangian

    Full text link
    We consider a generic gauge system, whose physical degrees of freedom are obtained by restriction on a constraint surface followed by factorization with respect to the action of gauge transformations; in so doing, no Hamiltonian structure or action principle is supposed to exist. For such a generic gauge system we construct a consistent BRST formulation, which includes the conventional BV Lagrangian and BFV Hamiltonian schemes as particular cases. If the original manifold carries a weak Poisson structure (a bivector field giving rise to a Poisson bracket on the space of physical observables) the generic gauge system is shown to admit deformation quantization by means of the Kontsevich formality theorem. A sigma-model interpretation of this quantization algorithm is briefly discussed.Comment: 19 pages, minor correction

    Formal Higher-Spin Theories and Kontsevich-Shoikhet-Tsygan Formality

    Full text link
    The formal algebraic structures that govern higher-spin theories within the unfolded approach turn out to be related to an extension of the Kontsevich Formality, namely, the Shoikhet-Tsygan Formality. Effectively, this allows one to construct the Hochschild cocycles of higher-spin algebras that make the interaction vertices. As an application of these results we construct a family of Vasiliev-like equations that generate the Hochschild cocycles with sp(2n)sp(2n) symmetry from the corresponding cycles. A particular case of sp(4)sp(4) may be relevant for the on-shell action of the 4d4d theory. We also give the exact equations that describe propagation of higher-spin fields on a background of their own. The consistency of formal higher-spin theories turns out to have a purely geometric interpretation: there exists a certain symplectic invariant associated to cutting a polytope into simplices, namely, the Alexander-Spanier cocycle.Comment: typos fixed, many comments added, 36 pages + 20 pages of Appendices, 3 figure

    A minimal BV action for Vasiliev's four-dimensional higher spin gravity

    Get PDF
    The action principle for Vasiliev's four-dimensional higher-spin gravity proposed recently by two of the authors, is converted into a minimal BV master action using the AKSZ procedure, which amounts to replacing the classical differential forms by vectorial superfields of fixed total degree given by the sum of form degree and ghost number. The nilpotency of the BRST operator is achieved by imposing boundary conditions and choosing appropriate gauge transitions between charts leading to a globally-defined formulation based on a principal bundle.Comment: 39 pages, 1 figure. Additional comments in the conclusion

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure
    corecore