1,680 research outputs found

    Accuracy of least-squares methods for the Navier-Stokes equations

    Get PDF
    Recently there has been substantial interest in least-squares finite element methods for velocity-vorticity-pressure formulations of the incompressible Navier-Stokes equations. The main cause for this interest is the fact that algorithms for the resulting discrete equations can be devised which require the solution of only symmetric, positive definite systems of algebraic equations. On the other hand, it is well-documented that methods using the vorticity as a primary variable often yield very poor approximations. Thus, here we study the accuracy of these methods through a series of computational experiments, and also comment on theoretical error estimates. It is found, despite the failure of standard methods for deriving error estimates, that computational evidence suggests that these methods are, at the least, nearly optimally accurate. Thus, in addition to the desirable matrix properties yielded by least-squares methods, one also obtains accurate approximations

    A bodner-partom visco-plastic dynamic sphere benchmark problem

    Get PDF
    Developing benchmark analytic solutions for problems in solid and fluid mechanics is very important for the purpose of testing and verifying computational physics codes. Our primary objective in this research is to obtain a benchmark analytic solution to the equation of motion in radially symmetric spherical coordinates. An analytic solution for the dynamic response of a sphere composed of an isotropic visco-plastic material and subjected to spherically symmetric boundary conditions is developed and implemented. The radial displacement u is computed by solving the equation of motion, a linear second-order hyperbolic PDE. The plastic strains εp and εp are computed by solving two non-linear first-order ODEs in time. We obtain a solution for u in terms of the plastic strain components and boundary conditions in the form of an infinite series. Computationally, at each time step, we set up an iteration scheme to solve the PDE-ODE system. The linear momentum equation is solved using the plastic strains from the previous iteration, then the plastic strain equations are solved numerically using the new displacement. We demonstrate the accuracy and convergence of our benchmark solution under spatial mesh, time step, and eigenmode refinement

    The randomly driven Ising ferromagnet, Part II: One and two dimensions

    Full text link
    We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influence of a fast switching, random external field. In Part I, we introduced a general formalism for describing such systems and presented the mean field theory. In this article we derive results for the one dimensional case, which can be only partially solved. Monte Carlo simulations performed on a square lattice indicate that the main features of the mean field theory survive the presence of strong fluctuations.Comment: 10 pages in REVTeX/LaTeX format, 17 eps/ps figures. Submitted to Journal of Physics
    corecore