256,350 research outputs found

    Self-Organizing Multi-Agent Systems for the Control of Complex Systems

    Get PDF
    Because of the law of requisite variety, designing a controller for complex systems implies designing a complex system. In software engineering, usual top-down approaches become inadequate to design such systems. The Adaptive Multi-Agent Systems (AMAS) approach relies on the cooperative self-organization of autonomous micro-level agents to tackle macro-level complexity. This bottom-up approach provides adaptive, scalable, and robust systems. This paper presents a complex system controller that has been designed following this approach, and shows results obtained with the automatic tuning of a real internal combustion engine

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    A mathematical formulation of intelligent agents and their activities

    Get PDF
    Includes bibliography: leaves 119-126.The task of optimising a collection of objective functions subject to a set of constraints is as important to industry as it is ubiquitous. The importance of this task is evidenced by the amount of research on this subject that is currently in progress. Although this problem has been solved satisfactorily in a number of domains, new techniques and formalisms are still being devised that are applicable in fields as diverse as digital filter design and software engineering. These methods, however, are often computationally intensive, and the heavy reliance on numeric processing usually renders them unintuitive. A further limitation is that many of the techniques treat the problem in top-down fashion. This approach often manifests itself in large, complex systems of equations that are difficult to solve and adapt. By contrast, in a bottom-up approach, a given task is distributed over a collection of smaller components. These components embed behaviour that is determined by simple rules. The interactions between the components, however, often yield behaviour, the complexity of which surpasses what can be captured by the systems of equations that arise from a top-down approach. In this dissertation, we wish to study this bottom-up approach in more detail. Our aim is not to solve the optimisation problem, but rather, to study the smaller components of the approach and their behaviour more closely. To model the components, we choose intelligent agents because these represent a simple yet effective paradigm for capturing complex behaviour with simple rules. We provide several representations for the agents, each of which enables us to model a different aspect of their behaviour. To formulate the representations, we use techniques and concepts from fields such as universal algebra, order theory, domain theory and topology. As part of the formulation we also present a case study to demonstrate how the formulation could be applied

    Can geocomputation save urban simulation? Throw some agents into the mixture, simmer and wait ...

    Get PDF
    There are indications that the current generation of simulation models in practical, operational uses has reached the limits of its usefulness under existing specifications. The relative stasis in operational urban modeling contrasts with simulation efforts in other disciplines, where techniques, theories, and ideas drawn from computation and complexity studies are revitalizing the ways in which we conceptualize, understand, and model real-world phenomena. Many of these concepts and methodologies are applicable to operational urban systems simulation. Indeed, in many cases, ideas from computation and complexity studies—often clustered under the collective term of geocomputation, as they apply to geography—are ideally suited to the simulation of urban dynamics. However, there exist several obstructions to their successful use in operational urban geographic simulation, particularly as regards the capacity of these methodologies to handle top-down dynamics in urban systems. This paper presents a framework for developing a hybrid model for urban geographic simulation and discusses some of the imposing barriers against innovation in this field. The framework infuses approaches derived from geocomputation and complexity with standard techniques that have been tried and tested in operational land-use and transport simulation. Macro-scale dynamics that operate from the topdown are handled by traditional land-use and transport models, while micro-scale dynamics that work from the bottom-up are delegated to agent-based models and cellular automata. The two methodologies are fused in a modular fashion using a system of feedback mechanisms. As a proof-of-concept exercise, a micro-model of residential location has been developed with a view to hybridization. The model mixes cellular automata and multi-agent approaches and is formulated so as to interface with meso-models at a higher scale
    • …
    corecore