1,912 research outputs found

    A Dilated Inception Network for Visual Saliency Prediction

    Full text link
    Recently, with the advent of deep convolutional neural networks (DCNN), the improvements in visual saliency prediction research are impressive. One possible direction to approach the next improvement is to fully characterize the multi-scale saliency-influential factors with a computationally-friendly module in DCNN architectures. In this work, we proposed an end-to-end dilated inception network (DINet) for visual saliency prediction. It captures multi-scale contextual features effectively with very limited extra parameters. Instead of utilizing parallel standard convolutions with different kernel sizes as the existing inception module, our proposed dilated inception module (DIM) uses parallel dilated convolutions with different dilation rates which can significantly reduce the computation load while enriching the diversity of receptive fields in feature maps. Moreover, the performance of our saliency model is further improved by using a set of linear normalization-based probability distribution distance metrics as loss functions. As such, we can formulate saliency prediction as a probability distribution prediction task for global saliency inference instead of a typical pixel-wise regression problem. Experimental results on several challenging saliency benchmark datasets demonstrate that our DINet with proposed loss functions can achieve state-of-the-art performance with shorter inference time.Comment: Accepted by IEEE Transactions on Multimedia. The source codes are available at https://github.com/ysyscool/DINe

    Visual Saliency Based on Multiscale Deep Features

    Get PDF
    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this CVPR 2015 paper, we discover that a high-quality visual saliency model can be trained with multiscale features extracted using a popular deep learning architecture, convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for extracting features at three different scales. We then propose a refinement method to enhance the spatial coherence of our saliency results. Finally, aggregating multiple saliency maps computed for different levels of image segmentation can further boost the performance, yielding saliency maps better than those generated from a single segmentation. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotation. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks, improving the F-Measure by 5.0% and 13.2% respectively on the MSRA-B dataset and our new dataset (HKU-IS), and lowering the mean absolute error by 5.7% and 35.1% respectively on these two datasets.Comment: To appear in CVPR 201
    • …
    corecore