11,201 research outputs found

    Bottom Schur functions

    Full text link
    We give a basis for the space V spanned by the lowest degree part \hat{s}_\lambda of the expansion of the Schur symmetric functions s_\lambda in terms of power sums, where we define the degree of the power sum p_i to be 1. In particular, the dimension of the subspace V_n spanned by those \hat{s}_\lambda for which \lambda is a partition of n is equal to the number of partitions of n whose parts differ by at least 2. We also show that a symmetric function closely related to \hat{s}_\lambda has the same coefficients when expanded in terms of power sums or augmented monomial symmetric functions. Proofs are based on the theory of minimal border strip decompositions of Young diagrams.Comment: 16 pages, 13 figures To appear in the Electronic Journal of Combinatoric

    Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices

    Get PDF
    We study asymptotics of perfect matchings on a large class of graphs called the contracting square-hexagon lattice, which is constructed row by row from either a row of a square grid or a row of a hexagonal lattice. We assign the graph periodic edge weights with period 1Ă—n1\times n, and consider the probability measure of perfect matchings in which the probability of each configuration is proportional to the product of edge weights. We show that the partition function of perfect matchings on such a graph can be computed explicitly by a Schur function depending on the edge weights. By analyzing the asymptotics of the Schur function, we then prove the Law of Large Numbers (limit shape) and the Central Limit Theorem (convergence to the Gaussian free field) for the corresponding height functions. We also show that the distribution of certain type of dimers near the turning corner is the same as the eigenvalues of Gaussian Unitary Ensemble, and that in the scaling limit under the boundary condition that each segment of the bottom boundary grows linearly with respect the dimension of the graph, the frozen boundary is a cloud curve whose number of tangent points to the bottom boundary of the domain depends on the size of the period, as well as the number of segments along the bottom boundary

    Row-strict quasisymmetric Schur functions

    Full text link
    Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the row-strict quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through row-strict tableaux. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships.Comment: 17 pages, 11 figure
    • …
    corecore