4,544 research outputs found

    Detecting Botnets Using Hidden Markov Model, Profile Hidden Markov Model and Network Flow Analysis

    Get PDF
    Botnet is a network of infected computer systems called bots managed remotely by an attacker using bot controllers. Using distributed systems, botnets can be used for large-scale cyber attacks to execute unauthorized actions on the targeted system like phishing, distributed denial of service (DDoS), data theft, and crashing of servers. Common internet protocols used by normal systems for regular communication like hypertext transfer (HTTP) and internet relay chat (IRC) are also used by botnets. Thus, distinguishing botnet activity from normal activity can be challenging. To address this issue, this project proposes an approach to detect botnets using peculiar traits in the communication between command and control servers and bots. Patterns can be observed in botnet behavior like orchestrated attacks, heartbeat signals, or periodic distribution of commands. Hidden Markov Models (HMM) and Profile Hidden Markov Model (PHMM) are probabilistic models that can be trained on network traffic data to identify activity patterns that suggest botnet activity. In this project, HMM and PHMM are used to detect and classify botnets using publicly available datasets for real network data consisting of botnet traffic mixed with normal and background traffic. A comparative analysis of performance of HMM and PHMM is conducted in this project and the results show that HMM and PHMM can be useful in detecting botnets. PHMM outperforms HMM in terms of accuracy of botnet detection

    Detecting Botnets Through Log Correlation

    Get PDF
    Botnets, which consist of thousands of compromised machines, can cause a significant threat to other systems by launching Distributed Denial of Service attacks, keylogging, and backdoors. In response to this threat, new effective techniques are needed to detect the presence of botnets. In this paper, we have used an interception technique to monitor Windows Application Programming Interface system calls made by communication applications. Existing approaches for botnet detection are based on finding bot traffic patterns. Our approach does not depend on finding patterns but rather monitors the change of behaviour in the system. In addition, we will present our idea of detecting botnet based on log correlations from different hosts

    Flooding attacks to internet threat monitors (ITM): Modeling and counter measures using botnet and honeypots

    Full text link
    The Internet Threat Monitoring (ITM),is a globally scoped Internet monitoring system whose goal is to measure, detect, characterize, and track threats such as distribute denial of service(DDoS) attacks and worms. To block the monitoring system in the internet the attackers are targeted the ITM system. In this paper we address flooding attack against ITM system in which the attacker attempt to exhaust the network and ITM's resources, such as network bandwidth, computing power, or operating system data structures by sending the malicious traffic. We propose an information-theoretic frame work that models the flooding attacks using Botnet on ITM. Based on this model we generalize the flooding attacks and propose an effective attack detection using Honeypots

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure

    PeerHunter: Detecting Peer-to-Peer Botnets through Community Behavior Analysis

    Full text link
    Peer-to-peer (P2P) botnets have become one of the major threats in network security for serving as the infrastructure that responsible for various of cyber-crimes. Though a few existing work claimed to detect traditional botnets effectively, the problem of detecting P2P botnets involves more challenges. In this paper, we present PeerHunter, a community behavior analysis based method, which is capable of detecting botnets that communicate via a P2P structure. PeerHunter starts from a P2P hosts detection component. Then, it uses mutual contacts as the main feature to cluster bots into communities. Finally, it uses community behavior analysis to detect potential botnet communities and further identify bot candidates. Through extensive experiments with real and simulated network traces, PeerHunter can achieve very high detection rate and low false positives.Comment: 8 pages, 2 figures, 11 tables, 2017 IEEE Conference on Dependable and Secure Computin
    • …
    corecore