5,970 research outputs found

    Abelian bordered factors and periodicity

    Full text link
    A finite word u is said to be bordered if u has a proper prefix which is also a suffix of u, and unbordered otherwise. Ehrenfeucht and Silberger proved that an infinite word is purely periodic if and only if it contains only finitely many unbordered factors. We are interested in abelian and weak abelian analogues of this result; namely, we investigate the following question(s): Let w be an infinite word such that all sufficiently long factors are (weakly) abelian bordered; is w (weakly) abelian periodic? In the process we answer a question of Avgustinovich et al. concerning the abelian critical factorization theorem.Comment: 14 page

    Biinfinite words with maximal recurrent unbordered factors

    Get PDF
    A finite non-empty word z is said to be a border of a finite non-empty word w if w=uz=zv for some non-empty words u and v. A finite non-empty word is said to be bordered if it admits a border, and it is said to be unbordered otherwise. In this paper, we give two characterizations of the biinfinite words of the form ...uuuvuuu..., where u and v are finite words, in terms of its unbordered factors. The main result of the paper states that the words of the form ...uuuvuuu... are precisely the biinfinite words w=...a_{-2}a_{-1}a_0a_1a_2... for which there exists a pair (l_0,r_0) of integers with l_0<r_0 such that, for every integers l\leq l_0 and r\geq r_0, the factor a_l...a_{l_0}...a_{r_0}... a_r is a bordered word. The words of the form ...uuuvuuu... are also characterized as being those biinfinite words w that admit a left recurrent unbordered factor (i.e., an unbordered factor of w that has an infinite number of occurrences "to the left'' in w) of maximal length that is also a right recurrent unbordered factor of maximal length. This last result is a biinfinite analogue of a result known for infinite words.Fundação para a Ciência e a Tecnologia (FCT) – Programa Operacional “Ciência, Tecnologia, Inovação” (POCTI), União Europeia (UE). Fundo Europeu de Desenvolvimento Regional (FEDER) - POCTI/32817/MAT/2000

    On the Number of Unbordered Factors

    Full text link
    We illustrate a general technique for enumerating factors of k-automatic sequences by proving a conjecture on the number f(n) of unbordered factors of the Thue-Morse sequence. We show that f(n) = 4 and that f(n) = n infinitely often. We also give examples of automatic sequences having exactly 2 unbordered factors of every length

    On prefixal factorizations of words

    Full text link
    We consider the class P1{\cal P}_1 of all infinite words xAωx\in A^\omega over a finite alphabet AA admitting a prefixal factorization, i.e., a factorization x=U0U1U2x= U_0 U_1U_2 \cdots where each UiU_i is a non-empty prefix of x.x. With each xP1x\in {\cal P}_1 one naturally associates a "derived" infinite word δ(x)\delta(x) which may or may not admit a prefixal factorization. We are interested in the class P{\cal P}_{\infty} of all words xx of P1{\cal P}_1 such that δn(x)P1\delta^n(x) \in {\cal P}_1 for all n1n\geq 1. Our primary motivation for studying the class P{\cal P}_{\infty} stems from its connection to a coloring problem on infinite words independently posed by T. Brown in \cite{BTC} and by the second author in \cite{LQZ}. More precisely, let P{\bf P} be the class of all words xAωx\in A^\omega such that for every finite coloring φ:A+C\varphi : A^+ \rightarrow C there exist cCc\in C and a factorization x=V0V1V2x= V_0V_1V_2\cdots with φ(Vi)=c\varphi(V_i)=c for each i0.i\geq 0. In \cite{DPZ} we conjectured that a word xPx\in {\bf P} if and only if xx is purely periodic. In this paper we show that PP,{\bf P}\subseteq {\cal P}_{\infty}, so in other words, potential candidates to a counter-example to our conjecture are amongst the non-periodic elements of P.{\cal P}_{\infty}. We establish several results on the class P{\cal P}_{\infty}. In particular, we show that a Sturmian word xx belongs to P{\cal P}_{\infty} if and only if xx is nonsingular, i.e., no proper suffix of xx is a standard Sturmian word

    Groupoid Extensions of Mapping Class Representations for Bordered Surfaces

    Get PDF
    The mapping class group of a surface with one boundary component admits numerous interesting representations including as a group of automorphisms of a free group and as a group of symplectic transformations. Insofar as the mapping class group can be identified with the fundamental group of Riemann's moduli space, it is furthermore identified with a subgroup of the fundamental path groupoid upon choosing a basepoint. A combinatorial model for this, the mapping class groupoid, arises from the invariant cell decomposition of Teichm\"uller space, whose fundamental path groupoid is called the Ptolemy groupoid. It is natural to try to extend representations of the mapping class group to the mapping class groupoid, i.e., construct a homomorphism from the mapping class groupoid to the same target that extends the given representations arising from various choices of basepoint. Among others, we extend both aforementioned representations to the groupoid level in this sense, where the symplectic representation is lifted both rationally and integrally. The techniques of proof include several algorithms involving fatgraphs and chord diagrams. The former extension is given by explicit formulae depending upon six essential cases, and the kernel and image of the groupoid representation are computed. Furthermore, this provides groupoid extensions of any representation of the mapping class group that factors through its action on the fundamental group of the surface including, for instance, the Magnus representation and representations on the moduli spaces of flat connections.Comment: 24 pages, 4 figures Theorem 3.6 has been strengthened, and Theorems 8.1 and 8.2 have been adde

    A Coloring Problem for Infinite Words

    Full text link
    In this paper we consider the following question in the spirit of Ramsey theory: Given xAω,x\in A^\omega, where AA is a finite non-empty set, does there exist a finite coloring of the non-empty factors of xx with the property that no factorization of xx is monochromatic? We prove that this question has a positive answer using two colors for almost all words relative to the standard Bernoulli measure on Aω.A^\omega. We also show that it has a positive answer for various classes of uniformly recurrent words, including all aperiodic balanced words, and all words xAωx\in A^\omega satisfying λx(n+1)λx(n)=1\lambda_x(n+1)-\lambda_x(n)=1 for all nn sufficiently large, where λx(n) \lambda_x(n) denotes the number of distinct factors of xx of length n.n.Comment: arXiv admin note: incorporates 1301.526
    corecore