26 research outputs found

    Learning domain-specific sentiment lexicons with applications to recommender systems

    Get PDF
    Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.WortreprĂ€sentationen, sogenannte Word Embeddings, sind generische ReprĂ€sentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nĂ€chsten Nachbarn. Viele Probleme der Computerlinguistik können durch WortreprĂ€sentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den WortreprĂ€sentationen enthalten sind. In der ersten Publikation untersuchen wir ĂŒberwachte, graphenbasierte Methodenn um WortreprĂ€sentationen zu erzeugen. Diese Methoden fĂŒhren zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, fĂŒr welches zwei Ă€quivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne KnotenĂ€hnlichkeiten effektiv berechnen, da graphenbasierte WortreprĂ€sentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende WortreprĂ€sentationen und kombinieren diese mit semantischen Ressourcen, indem wir ReprĂ€sentationen fĂŒr Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und EntitĂ€ten. Die FlexibilitĂ€t unserer Methode zeichnet sich dadurch aus, dass wir beliebige WortreprĂ€sentationen als Eingabe verwenden können und keinen zusĂ€tzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der WortreprĂ€sentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten ReprĂ€sentationen zur Erstellung von WörterbĂŒchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und HĂ€ufigkeit. Die letzte Publikation prĂ€sentiert eine neue Rechenmethode fĂŒr die interpretierbaren ultra-kompakten UntervektorrĂ€ume -- Stimmung, Konkretheit, HĂ€ufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort fĂŒr Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Information extraction of +/-effect events to support opinion inference

    Get PDF
    Recently, work in NLP was initiated on a type of opinion inference that arises when opinions are expressed toward events which have positive or negative effects on entities, called +/-effect events. The ultimate goal is to develop a fully automatic system capable of recognizing inferred attitudes. To achieve its results, the inference system requires all instances of +/-effect events. Therefore, this dissertation focuses on +/-effect events to support opinion inference. To extract +/-effect events, we first need the list of +/-effect events. Due to significant sense ambiguity, our goal is to develop a sense-level rather than word-level lexicon. To handle sense-level information, WordNet is adopted. We adopt a graph-based method which is seeded by entries culled from FrameNet and then expanded by exploiting semantic relations in WordNet. We show that WordNet relations are useful for the polarity propagation in the graph model. In addition, to maximize the effectiveness of different types of information, we combine a graph-based method using WordNet relations and a standard classifier using gloss information. Further, we provide evidence that the model is an effective way to guide manual annotation to find +/-effect senses that are not in the seed set. To exploit the sense-level lexicons, we have to carry out word sense disambiguation. We present a knowledge-based +/-effect coarse-grained word sense disambiguation method based on selectional preferences via topic models. For more information, we first group senses, and then utilize topic models to model selectional preferences. Our experiments show that selectional preferences are helpful in our work. To support opinion inferences, we need to identify not only +/-effect events but also their affected entities automatically. Thus, we address both +/-effect event detection and affected entity identification. Since +/-effect events and their affected entities are closely related, instead of a pipeline system, we present a joint model to extract +/-effect events and their affected entities simultaneously. We demonstrate that our joint model is promising to extract +/-effect events and their affected entities jointly

    Automatic Generation of Lexical Resources for Opinion Mining: Models, Algorithms and Applications

    Get PDF
    Opinion mining is a recent discipline at the crossroads of Information Retrieval and of Computational Linguistics which is concerned not with the topic a document is about, but with the opinion it expresses. It has a rich set of applications, ranging from tracking users' opinions about products or about political candidates as expressed in online forums, to customer relationship management. Functional to the extraction of opinions from text is the determination of the relevant entities of the language that are used to express opinions, and their opinion-related properties. For example, determining that the term beautiful casts a positive connotation to its subject. In this thesis we investigate on the automatic recognition of opinion-related properties of terms. This results into building opinion-related lexical resources, which can be used into opinion mining applications. We start from the (relatively) simple problem of determining the orientation of subjective terms. We propose an original semi-supervised term classification model that is based on the quantitative analysis of the glosses of such terms, i.e. the definitions that these terms are given in on-line dictionaries. This method outperforms all known methods when tested on the recognized standard benchmarks for this task. We show how our method is capable to produce good results on more complex tasks, such as discriminating subjective terms (e.g., good) from objective ones (e.g., green), or classifying terms on a fine-grained attitude taxonomy. We then propose a relevant refinement of the task, i.e., distinguishing the opinion-related properties of distinct term senses. We present SentiWordNet, a novel high-quality, high-coverage lexical resource, where each one of the 115,424 senses contained in WordNet has been automatically evaluated on the three dimensions of positivity, negativity, and objectivity. We propose also an original and effective use of random-walk models to rank term senses by their positivity or negativity. The random-walk algorithms we present have a great application potential also outside the opinion mining area, for example in word sense disambiguation tasks. A result of this experience is the generation of an improved version of SentiWordNet. We finally evaluate and compare the various versions of SentiWordNet we present here with other opinion-related lexical resources well-known in literature, experimenting their use in an Opinion Extraction application. We show that the use of SentiWordNet produces a significant improvement with respect to the baseline system, not using any specialized lexical resource, and also with respect to the use of other opinion-related lexical resources

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.WortreprĂ€sentationen, sogenannte Word Embeddings, sind generische ReprĂ€sentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nĂ€chsten Nachbarn. Viele Probleme der Computerlinguistik können durch WortreprĂ€sentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den WortreprĂ€sentationen enthalten sind. In der ersten Publikation untersuchen wir ĂŒberwachte, graphenbasierte Methodenn um WortreprĂ€sentationen zu erzeugen. Diese Methoden fĂŒhren zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, fĂŒr welches zwei Ă€quivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne KnotenĂ€hnlichkeiten effektiv berechnen, da graphenbasierte WortreprĂ€sentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende WortreprĂ€sentationen und kombinieren diese mit semantischen Ressourcen, indem wir ReprĂ€sentationen fĂŒr Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und EntitĂ€ten. Die FlexibilitĂ€t unserer Methode zeichnet sich dadurch aus, dass wir beliebige WortreprĂ€sentationen als Eingabe verwenden können und keinen zusĂ€tzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der WortreprĂ€sentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten ReprĂ€sentationen zur Erstellung von WörterbĂŒchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und HĂ€ufigkeit. Die letzte Publikation prĂ€sentiert eine neue Rechenmethode fĂŒr die interpretierbaren ultra-kompakten UntervektorrĂ€ume -- Stimmung, Konkretheit, HĂ€ufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort fĂŒr Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”
    corecore