213 research outputs found

    Scaling Limit and Critical Exponents for Two-Dimensional Bootstrap Percolation

    Get PDF
    Consider a cellular automaton with state space {0,1}Z2\{0,1 \}^{{\mathbb Z}^2} where the initial configuration ω0\omega_0 is chosen according to a Bernoulli product measure, 1's are stable, and 0's become 1's if they are surrounded by at least three neighboring 1's. In this paper we show that the configuration ωn\omega_n at time n converges exponentially fast to a final configuration ωˉ\bar\omega, and that the limiting measure corresponding to ωˉ\bar\omega is in the universality class of Bernoulli (independent) percolation. More precisely, assuming the existence of the critical exponents β\beta, η\eta, ν\nu and γ\gamma, and of the continuum scaling limit of crossing probabilities for independent site percolation on the close-packed version of Z2{\mathbb Z}^2 (i.e., for independent *-percolation on Z2{\mathbb Z}^2), we prove that the bootstrapped percolation model has the same scaling limit and critical exponents. This type of bootstrap percolation can be seen as a paradigm for a class of cellular automata whose evolution is given, at each time step, by a monotonic and nonessential enhancement.Comment: 15 page

    Spiral Model: a cellular automaton with a discontinuous glass transition

    Full text link
    We introduce a new class of two-dimensional cellular automata with a bootstrap percolation-like dynamics. Each site can be either empty or occupied by a single particle and the dynamics follows a deterministic updating rule at discrete times which allows only emptying sites. We prove that the threshold density ρc\rho_c for convergence to a completely empty configuration is non trivial, 0<ρc<10<\rho_c<1, contrary to standard bootstrap percolation. Furthermore we prove that in the subcritical regime, ρ<ρc\rho<\rho_c, emptying always occurs exponentially fast and that ρc\rho_c coincides with the critical density for two-dimensional oriented site percolation on \bZ^2. This is known to occur also for some cellular automata with oriented rules for which the transition is continuous in the value of the asymptotic density and the crossover length determining finite size effects diverges as a power law when the critical density is approached from below. Instead for our model we prove that the transition is {\it discontinuous} and at the same time the crossover length diverges {\it faster than any power law}. The proofs of the discontinuity and the lower bound on the crossover length use a conjecture on the critical behaviour for oriented percolation. The latter is supported by several numerical simulations and by analytical (though non rigorous) works through renormalization techniques. Finally, we will discuss why, due to the peculiar {\it mixed critical/first order character} of this transition, the model is particularly relevant to study glassy and jamming transitions. Indeed, we will show that it leads to a dynamical glass transition for a Kinetically Constrained Spin Model. Most of the results that we present are the rigorous proofs of physical arguments developed in a joint work with D.S.Fisher.Comment: 42 pages, 11 figure

    Higher order corrections for anisotropic bootstrap percolation

    Get PDF
    We study the critical probability for the metastable phase transition of the two-dimensional anisotropic bootstrap percolation model with (1,2)(1,2)-neighbourhood and threshold r=3r = 3. The first order asymptotics for the critical probability were recently determined by the first and second authors. Here we determine the following sharp second and third order asymptotics: pc([L]2,N(1,2),3)  =  (loglogL)212logLloglogLlogloglogL3logL+(log92+1±o(1))loglogL6logL. p_c\big( [L]^2,\mathcal{N}_{(1,2)},3 \big) \; = \; \frac{(\log \log L)^2}{12\log L} \, - \, \frac{\log \log L \, \log \log \log L}{ 3\log L} + \frac{\left(\log \frac{9}{2} + 1 \pm o(1) \right)\log \log L}{6\log L}. We note that the second and third order terms are so large that the first order asymptotics fail to approximate pcp_c even for lattices of size well beyond 1010100010^{10^{1000}}.Comment: 46 page

    The time of graph bootstrap percolation

    Get PDF
    Graph bootstrap percolation, introduced by Bollob\'as in 1968, is a cellular automaton defined as follows. Given a "small" graph HH and a "large" graph G=G0KnG = G_0 \subseteq K_n, in consecutive steps we obtain Gt+1G_{t+1} from GtG_t by adding to it all new edges ee such that GteG_t \cup e contains a new copy of HH. We say that GG percolates if for some t0t \geq 0, we have Gt=KnG_t = K_n. For H=KrH = K_r, the question about the size of the smallest percolating graphs was independently answered by Alon, Frankl and Kalai in the 1980's. Recently, Balogh, Bollob\'as and Morris considered graph bootstrap percolation for G=G(n,p)G = G(n,p) and studied the critical probability pc(n,Kr)p_c(n,K_r), for the event that the graph percolates with high probability. In this paper, using the same setup, we determine, up to a logarithmic factor, the critical probability for percolation by time tt for all 1tCloglogn1 \leq t \leq C \log\log n.Comment: 18 pages, 3 figure
    corecore