4,841 research outputs found

    Randomized Prior Functions for Deep Reinforcement Learning

    Full text link
    Dealing with uncertainty is essential for efficient reinforcement learning. There is a growing literature on uncertainty estimation for deep learning from fixed datasets, but many of the most popular approaches are poorly-suited to sequential decision problems. Other methods, such as bootstrap sampling, have no mechanism for uncertainty that does not come from the observed data. We highlight why this can be a crucial shortcoming and propose a simple remedy through addition of a randomized untrainable `prior' network to each ensemble member. We prove that this approach is efficient with linear representations, provide simple illustrations of its efficacy with nonlinear representations and show that this approach scales to large-scale problems far better than previous attempts

    Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning

    Full text link
    Posterior sampling for reinforcement learning (PSRL) is an effective method for balancing exploration and exploitation in reinforcement learning. Randomised value functions (RVF) can be viewed as a promising approach to scaling PSRL. However, we show that most contemporary algorithms combining RVF with neural network function approximation do not possess the properties which make PSRL effective, and provably fail in sparse reward problems. Moreover, we find that propagation of uncertainty, a property of PSRL previously thought important for exploration, does not preclude this failure. We use these insights to design Successor Uncertainties (SU), a cheap and easy to implement RVF algorithm that retains key properties of PSRL. SU is highly effective on hard tabular exploration benchmarks. Furthermore, on the Atari 2600 domain, it surpasses human performance on 38 of 49 games tested (achieving a median human normalised score of 2.09), and outperforms its closest RVF competitor, Bootstrapped DQN, on 36 of those.Comment: Camera ready version, NeurIPS 201

    Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

    Full text link
    Model-based reinforcement learning (RL) algorithms can attain excellent sample efficiency, but often lag behind the best model-free algorithms in terms of asymptotic performance. This is especially true with high-capacity parametric function approximators, such as deep networks. In this paper, we study how to bridge this gap, by employing uncertainty-aware dynamics models. We propose a new algorithm called probabilistic ensembles with trajectory sampling (PETS) that combines uncertainty-aware deep network dynamics models with sampling-based uncertainty propagation. Our comparison to state-of-the-art model-based and model-free deep RL algorithms shows that our approach matches the asymptotic performance of model-free algorithms on several challenging benchmark tasks, while requiring significantly fewer samples (e.g., 8 and 125 times fewer samples than Soft Actor Critic and Proximal Policy Optimization respectively on the half-cheetah task).Comment: NIPS 2018, video and code available at https://sites.google.com/view/drl-in-a-handful-of-trials

    A Model-Based Reinforcement Learning Approach for a Rare Disease Diagnostic Task

    Full text link
    In this work, we present our various contributions to the objective of building a decision support tool for the diagnosis of rare diseases. Our goal is to achieve a state of knowledge where the uncertainty about the patient's disease is below a predetermined threshold. We aim to reach such states while minimizing the average number of medical tests to perform. In doing so, we take into account the need, in many medical applications, to avoid, as much as possible, any misdiagnosis. To solve this optimization task, we investigate several reinforcement learning algorithm and make them operable in our high-dimensional and sparse-reward setting. We also present a way to combine expert knowledge, expressed as conditional probabilities, with real clinical data. This is crucial because the scarcity of data in the field of rare diseases prevents any approach based solely on clinical data. Finally we show that it is possible to integrate the ontological information about symptoms while remaining in our probabilistic reasoning. It enables our decision support tool to process information given at different level of precision by the user.Comment: 24 page

    Efficient Exploration through Bayesian Deep Q-Networks

    Full text link
    We study reinforcement learning (RL) in high dimensional episodic Markov decision processes (MDP). We consider value-based RL when the optimal Q-value is a linear function of d-dimensional state-action feature representation. For instance, in deep-Q networks (DQN), the Q-value is a linear function of the feature representation layer (output layer). We propose two algorithms, one based on optimism, LINUCB, and another based on posterior sampling, LINPSRL. We guarantee frequentist and Bayesian regret upper bounds of O(d sqrt{T}) for these two algorithms, where T is the number of episodes. We extend these methods to deep RL and propose Bayesian deep Q-networks (BDQN), which uses an efficient Thompson sampling algorithm for high dimensional RL. We deploy the double DQN (DDQN) approach, and instead of learning the last layer of Q-network using linear regression, we use Bayesian linear regression, resulting in an approximated posterior over Q-function. This allows us to directly incorporate the uncertainty over the Q-function and deploy Thompson sampling on the learned posterior distribution resulting in efficient exploration/exploitation trade-off. We empirically study the behavior of BDQN on a wide range of Atari games. Since BDQN carries out more efficient exploration and exploitation, it is able to reach higher return substantially faster compared to DDQN

    BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems

    Full text link
    We present a new algorithm that significantly improves the efficiency of exploration for deep Q-learning agents in dialogue systems. Our agents explore via Thompson sampling, drawing Monte Carlo samples from a Bayes-by-Backprop neural network. Our algorithm learns much faster than common exploration strategies such as ϵ\epsilon-greedy, Boltzmann, bootstrapping, and intrinsic-reward-based ones. Additionally, we show that spiking the replay buffer with experiences from just a few successful episodes can make Q-learning feasible when it might otherwise fail.Comment: 13 pages, 9 figure

    Model-Augmented Actor-Critic: Backpropagating through Paths

    Full text link
    Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator to augment the data for policy optimization or value function learning. In this paper, we show how to make more effective use of the model by exploiting its differentiability. We construct a policy optimization algorithm that uses the pathwise derivative of the learned model and policy across future timesteps. Instabilities of learning across many timesteps are prevented by using a terminal value function, learning the policy in an actor-critic fashion. Furthermore, we present a derivation on the monotonic improvement of our objective in terms of the gradient error in the model and value function. We show that our approach (i) is consistently more sample efficient than existing state-of-the-art model-based algorithms, (ii) matches the asymptotic performance of model-free algorithms, and (iii) scales to long horizons, a regime where typically past model-based approaches have struggled.Comment: Accepted paper at ICLR 202

    Deep Exploration via Randomized Value Functions

    Full text link
    We study the use of randomized value functions to guide deep exploration in reinforcement learning. This offers an elegant means for synthesizing statistically and computationally efficient exploration with common practical approaches to value function learning. We present several reinforcement learning algorithms that leverage randomized value functions and demonstrate their efficacy through computational studies. We also prove a regret bound that establishes statistical efficiency with a tabular representation.Comment: Accepted for publication in Journal of Machine Learning Research 201

    Efficient exploration with Double Uncertain Value Networks

    Full text link
    This paper studies directed exploration for reinforcement learning agents by tracking uncertainty about the value of each available action. We identify two sources of uncertainty that are relevant for exploration. The first originates from limited data (parametric uncertainty), while the second originates from the distribution of the returns (return uncertainty). We identify methods to learn these distributions with deep neural networks, where we estimate parametric uncertainty with Bayesian drop-out, while return uncertainty is propagated through the Bellman equation as a Gaussian distribution. Then, we identify that both can be jointly estimated in one network, which we call the Double Uncertain Value Network. The policy is directly derived from the learned distributions based on Thompson sampling. Experimental results show that both types of uncertainty may vastly improve learning in domains with a strong exploration challenge.Comment: Deep Reinforcement Learning Symposium @ Conference on Neural Information Processing Systems (NIPS) 201

    A Tour of Reinforcement Learning: The View from Continuous Control

    Full text link
    This manuscript surveys reinforcement learning from the perspective of optimization and control with a focus on continuous control applications. It surveys the general formulation, terminology, and typical experimental implementations of reinforcement learning and reviews competing solution paradigms. In order to compare the relative merits of various techniques, this survey presents a case study of the Linear Quadratic Regulator (LQR) with unknown dynamics, perhaps the simplest and best-studied problem in optimal control. The manuscript describes how merging techniques from learning theory and control can provide non-asymptotic characterizations of LQR performance and shows that these characterizations tend to match experimental behavior. In turn, when revisiting more complex applications, many of the observed phenomena in LQR persist. In particular, theory and experiment demonstrate the role and importance of models and the cost of generality in reinforcement learning algorithms. This survey concludes with a discussion of some of the challenges in designing learning systems that safely and reliably interact with complex and uncertain environments and how tools from reinforcement learning and control might be combined to approach these challenges.Comment: minor revision with a few clarifying passages and corrected typo
    • …
    corecore