434 research outputs found

    Artificial Intelligence-based Cybersecurity for Connected and Automated Vehicles

    Get PDF
    The damaging effects of cyberattacks to an industry like the Cooperative Connected and Automated Mobility (CCAM) can be tremendous. From the least important to the worst ones, one can mention for example the damage in the reputation of vehicle manufacturers, the increased denial of customers to adopt CCAM, the loss of working hours (having direct impact on the European GDP), material damages, increased environmental pollution due e.g., to traffic jams or malicious modifications in sensors’ firmware, and ultimately, the great danger for human lives, either they are drivers, passengers or pedestrians. Connected vehicles will soon become a reality on our roads, bringing along new services and capabilities, but also technical challenges and security threats. To overcome these risks, the CARAMEL project has developed several anti-hacking solutions for the new generation of vehicles. CARAMEL (Artificial Intelligence-based Cybersecurity for Connected and Automated Vehicles), a research project co-funded by the European Union under the Horizon 2020 framework programme, is a project consortium with 15 organizations from 8 European countries together with 3 Korean partners. The project applies a proactive approach based on Artificial Intelligence and Machine Learning techniques to detect and prevent potential cybersecurity threats to autonomous and connected vehicles. This approach has been addressed based on four fundamental pillars, namely: Autonomous Mobility, Connected Mobility, Electromobility, and Remote Control Vehicle. This book presents theory and results from each of these technical directions

    Artificial Intelligence-based Cybersecurity for Connected and Automated Vehicles

    Get PDF
    The damaging effects of cyberattacks to an industry like the Cooperative Connected and Automated Mobility (CCAM) can be tremendous. From the least important to the worst ones, one can mention for example the damage in the reputation of vehicle manufacturers, the increased denial of customers to adopt CCAM, the loss of working hours (having direct impact on the European GDP), material damages, increased environmental pollution due e.g., to traffic jams or malicious modifications in sensors’ firmware, and ultimately, the great danger for human lives, either they are drivers, passengers or pedestrians. Connected vehicles will soon become a reality on our roads, bringing along new services and capabilities, but also technical challenges and security threats. To overcome these risks, the CARAMEL project has developed several anti-hacking solutions for the new generation of vehicles. CARAMEL (Artificial Intelligence-based Cybersecurity for Connected and Automated Vehicles), a research project co-funded by the European Union under the Horizon 2020 framework programme, is a project consortium with 15 organizations from 8 European countries together with 3 Korean partners. The project applies a proactive approach based on Artificial Intelligence and Machine Learning techniques to detect and prevent potential cybersecurity threats to autonomous and connected vehicles. This approach has been addressed based on four fundamental pillars, namely: Autonomous Mobility, Connected Mobility, Electromobility, and Remote Control Vehicle. This book presents theory and results from each of these technical directions

    Doctor of Philosophy

    Get PDF
    dissertationThis thesis analyzed biped stability through a qualitative likelihood of falling and quantitative Potential to Fall (PF) analysis. Both analyses were applied to walking and skiing to better understand behaviors across a wider spectrum of bipedal gaits. For both walking and skiing, two types of locomotion were analyzed. Walking studies compared normal locomotion (gait) to an unexpected slip. Skiing studies compared wedge style locomotion (more common to beginning and intermediate skiers) to parallel style locomotion (more common to advanced and expert skiers). Two mediums of data collection were used. A motion capture laboratory with stereographic cameras and force plates were used for walking studies, and instrumented insoles, capable of force and inertial measurement, were used for skiing studies. Both kinematics and kinetics were used to evaluate the likelihood of falling. The PF metric, based on root mean squared error, was used to quantify the likelihood of falling for multiple subjects both in walking and skiing. PF was based on foot kinematics for walking and skiing studies. PF also included center of pressure for skiing studies. The PF was lower for normal gaits in walking studies and wedge style locomotion for skiing studies

    Platform-based design, test and fast verification flow for mixed-signal systems on chip

    Get PDF
    This research is providing methodologies to enhance the design phase from architectural space exploration and system study to verification of the whole mixed-signal system. At the beginning of the work, some innovative digital IPs have been designed to develop efficient signal conditioning for sensor systems on-chip that has been included in commercial products. After this phase, the main focus has been addressed to the creation of a re-usable and versatile test of the device after the tape-out which is close to become one of the major cost factor for ICs companies, strongly linking it to model’s test-benches to avoid re-design phases and multi-environment scenarios, producing a very effective approach to a single, fast and reliable multi-level verification environment. All these works generated different publications in scientific literature. The compound scenario concerning the development of sensor systems is presented in Chapter 1, together with an overview of the related market with a particular focus on the latest MEMS and MOEMS technology devices, and their applications in various segments. Chapter 2 introduces the state of the art for sensor interfaces: the generic sensor interface concept (based on sharing the same electronics among similar applications achieving cost saving at the expense of area and performance loss) versus the Platform Based Design methodology, which overcomes the drawbacks of the classic solution by keeping the generality at the highest design layers and customizing the platform for a target sensor achieving optimized performances. An evolution of Platform Based Design achieved by implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform is therefore presented. ISIF is a highly configurable mixed-signal chip which allows designers to perform an effective design space exploration and to evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach. In chapter 3 we describe the design of a smart sensor interface for conditioning next generation MOEMS. The adoption of a new, high performance and high integrated technology allow us to integrate not only a versatile platform but also a powerful ARM processor and various IPs providing the possibility to use the platform not only as a conditioning platform but also as a processing unit for the application. In this chapter a description of the various blocks is given, with a particular emphasis on the IP developed in order to grant the highest grade of flexibility with the minimum area occupation. The architectural space evaluation and the application prototyping with ISIF has enabled an effective, rapid and low risk development of a new high performance platform achieving a flexible sensor system for MEMS and MOEMS monitoring and conditioning. The platform has been design to cover very challenging test-benches, like a laser-based projector device. In this way the platform will not only be able to effectively handle the sensor but also all the system that can be built around it, reducing the needed for further electronics and resulting in an efficient test bench for the algorithm developed to drive the system. The high costs in ASIC development are mainly related to re-design phases because of missing complete top-level tests. Analog and digital parts design flows are separately verified. Starting from these considerations, in the last chapter a complete test environment for complex mixed-signal chips is presented. A semi-automatic VHDL-AMS flow to provide totally matching top-level is described and then, an evolution for fast self-checking test development for both model and real chip verification is proposed. By the introduction of a Python interface, the designer can easily perform interactive tests to cover all the features verification (e.g. calibration and trimming) into the design phase and check them all with the same environment on the real chip after the tape-out. This strategy has been tested on a consumer 3D-gyro for consumer application, in collaboration with SensorDynamics AG

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    The use of a Digital Image Correlation method with a low-speed camera to obtain characteristics of surface velocity and sound radiation for automotive-type panels

    Get PDF
    The perceived quality of a vehicle is highly influenced by the driver s experience of the vehicle interior noise. Significant research has been carried out all over the world in order to characterize structural and acoustic characteristics, to control and minimize the vibration and noise from entering or emitted to vehicles. Designers require tools to inform them whether the design changes are positive or negative in terms of the noise and vibration, and to help validate numerical finite element models of complicated structures. This research explores the use of Digital Image Correlation (DIC) equipment and methods by using a relatively inexpensive low speed camera to investigate the structural-acoustics characteristics applied to automotive-type panels, where otherwise a highly expensive and sensitive scanning laser Doppler vibrometer would be required. Experimental measurements based on Noise Path Analysis (NPA) have been carried out and theoretical and numerical predictions on sound radiation behaviour have been developed. The prediction values have been evaluated and validated with experimental measurements. Using a DIC measurement method to obtain spatially averaged surface velocities, averaged over several cycles through phase locking, the results for the sound power predictions for the selected mode shape and the resonance frequencies provided a good estimation when comparing with the experiment. For mode (1, 1), the sound power prediction was 80.9 dB while the measured one was 77.2 dB with a difference of 3.7.while the other selected modes showed a difference not more than 3.7 dB. It was within the range suggested by considering the mathematical simplification approach during the prediction development stage. To conclude, it was found that the prediction of sound power throughout the vibrating structure can provide a good accuracy by using the DIC method Therefore, it can be an alternative technique to evaluate the sound radiation for characterizing one of the structural propertie

    Capturing ergonomics requirements in the global automotive industry

    Get PDF
    This thesis examines the issues surrounding the collection and dissemination of customer ergonomics requirements in the automotive industry. The aim of the research is to develop a Toolset of methods, known as the Lifestyle Scenario Toolset, for gathering customer requirements in overseas markets, and for presenting the information collected to design teams, taking a user-centred design approach. The Toolset was developed and evaluated with the co-operation of employees from a major UK automotive company. Four studies were conducted, the first comprised a series of interviews to establish the needs of both the data gatherers and data users for a Toolset of methods to collect and communicate overseas customer information. The data gatherers were drawn from the company's Market Researchers, Ergonomists and people responsible for the company's overseas operations. The data users were the design team responsible for the development of the company's next generation 4X4 vehicle. Results showed that the data collection tools which formed part I of the Toolset should be quick to use, require no ergonomics expertise to implement and be cost effective to use. The interviews with data users identified the need for tools which could communicate customer ergonomics requirements to them in a way which fitted in with their current working practices. In addition the tools needed to communicate information in language which was familiar to the design team, and be visually based where possible. The second study explored the development of suitable data collection tools for inclusion in the Lifestyle Scenario Toolset. Building on the needs identified in the first study together with information from the current literature a number of data collection tools were developed for inclusion in part I of the Lifestyle Scenario Toolset. These tools were a questionnaire, driving diary and photographs, focus group, ergonomics audit and background information tool. The tools were designed to collect a range of different data types, e.g. qualitative, quantitative, pictorial and customer verbatims, to provide a rich picture of users and their activities. The tools were used in a field trial to collect data from overseas customers about their ergonomics requirements and the tasks they carried out using their vehicle, in the context of their lifestyle. The third study focused on the development of a set of tools to communicate the data collected in part 1 of the Toolset, to the design team who would use it in their work. The data communication tools were developed to provide information to design teams at a number of levels, enabling them to use the data at an appropriate level for their needs. High level summaries of each of the tools were developed and scenarios presented on storyboards were used to integrate information from all of the data collection tools to provide detailed information about customers' ergonomics requirements and lifestyle. The data communication tools also used a variety of data types and presentation mediums, such as pictures, graphs and customer quotes to increase the richness of the data presented. The fourth study involved the evaluation of the suitability of the Toolset for collecting and communicating overseas customer ergonomics requirements. The data gatherers, and data users (design team) carried out a field trial using the Toolset to establish its usefulness to them in their work. The results of the evaluation showed that the data gatherers found the Toolset easy to implement and were able to use it to pick up overseas customers ergonomics requirements. The communication tools were able to provide the design team with new and useful customer ergonomics information, in a range of formats which they felt comfortable using in their work. The implementation of a user-centred design approach to the development of methods for collecting and communicating overseas customer ergonomics requirements enabled the creation of a Toolset which met the needs of the people who will use it. This increased its acceptance by people in the company and thus the likelihood of the Lifestyle Scenario Toolset's continued use within the company

    Effects of Emergency Vehicle Warning Lighting System Characteristics on Driver Perception and Behavior

    Get PDF
    Secondary crashes, including struck-by incidents are a leading cause of line-of-duty deaths among emergency responders, such as firefighters, law enforcement officers, and emergency medical service providers. The introduction of light emitting diode (LED) sources and advanced lighting control systems, provides a wide range of options for emergency lighting configurations. This study investigated the impact of lighting color, intensity, modulation, and flash rate on driver behavior while traversing a traffic incident scene at night. The impact of retroreflective chevron markings in combination with lighting configurations, as well as the measurement of “moth-to-flame” effects of emergency lighting on drivers was also investigated. The results indicate that higher intensity lights were judged consistently as more glaring, but were only rated as marginally more visible. This finding may suggest that dimming emergency lights at night could results in near equal visibility, but with significantly less glare. The rated visibility of the lights appears to be related to the perceived saturation of the color, while discomfort glare is related to the amount of short-wavelength spectral content. This suggest colors at the extreme ends of the light spectrum (red and blue) are more visible. However, the results indicate that blue lights, with their shorter wavelength are more glaring than red lights. Therefore, red may be a better choice for emergency vehicle lighting at night. The results also suggest that the presence of very highly reflective markings may decrease drivers’ ability to see first responders working adjacent to their vehicles. This is likely because the retro-reflective sheeting is compounding the emergency lighting visible to the drivers as well as the reflection of the driver’s headlights against the sheeting. Taking the study in its totality, it is likely that national standards are needed which specify the maximum intensities for emergency vehicle lighting at night. Further research is needed to identify these levels and likewise investigate the maximum luminance for retro-reflective sheeting

    The unsteady aerodynamics of static and oscillating simple automotive bodies

    Get PDF
    A wind tunnel based investigation into the effects of unsteady yaw angles on the aerodynamics of a simple automotive body has been carried out to increase the understanding of the effects of unsteady onset conditions similar to those experienced in normal driving conditions. Detailed flow field measurements have been made using surface pressure tappings and PIV around a simple automotive model in steady state conditions and these have been compared to measurements made whilst the model was oscillating in the yaw plane. The oscillating motion was created by a motored crank which was used to produce consistent and repeated motion which produced a reduced frequency that indicated that a quasi-static response should be expected. The PIV data are used to compare the wake flow structures and the surface pressures are used to infer aerodynamic loads and investigate the development of the flow structures across the surfaces of the model. This includes a comprehensive comparison of the surface pressures on the sides of the model during a transient and quasi-static yaw angel oscillation. These results show differences between the two test conditions with the oscillating model results containing hysteresis and the greatest differences in the flow field occurring on the leeside of the model. Two configurations of the same model with different rear pillar geometries were used to isolate model specific effects. Square rear pillars create strong and stable trailing vortices which are less affected by the model motion whereas radiused rear pillars created weaker and less steady vortices that mixed with the quasi-2D wake behind the model base and were affected to a greater extent by the model motion. The unsteadiness in the trailing vortex separation feeds upstream into the A-pillar vortex demonstrating that small geometry changes at the rear can affect the entire flow field around the model
    • …
    corecore