13,809 research outputs found

    Boosting the computation of the matrix exponential

    Full text link
    [EN] This paper presents new Taylor algorithms for the computation of the matrix exponential based on recent new matrix polynomial evaluation methods. Those methods are more efficient than the well known Paterson-Stockmeyer method. The cost of the proposed algorithms is reduced with respect to previous algorithms based on Taylor approximations. Tests have been performed to compare the MATLAB implementations of the new algorithms to a state-of-the-art Pade algorithm for the computation of the matrix exponential, providing higher accuracy and cost performances.This work has been supported by Spanish Ministerio de Economia y Competitividad and European Regional Development Fund (ERDF) grant TIN2014-59294-P.Sastre, J.; Ibáñez González, JJ.; Defez Candel, E. (2019). Boosting the computation of the matrix exponential. Applied Mathematics and Computation. 340:206-220. https://doi.org/10.1016/j.amc.2018.08.017S20622034

    Positive Semidefinite Metric Learning with Boosting

    Full text link
    The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 11 pages, Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), Vancouver, Canad

    A Quantum Computational Learning Algorithm

    Full text link
    An interesting classical result due to Jackson allows polynomial-time learning of the function class DNF using membership queries. Since in most practical learning situations access to a membership oracle is unrealistic, this paper explores the possibility that quantum computation might allow a learning algorithm for DNF that relies only on example queries. A natural extension of Fourier-based learning into the quantum domain is presented. The algorithm requires only an example oracle, and it runs in O(sqrt(2^n)) time, a result that appears to be classically impossible. The algorithm is unique among quantum algorithms in that it does not assume a priori knowledge of a function and does not operate on a superposition that includes all possible states.Comment: This is a reworked and improved version of a paper originally entitled "Quantum Harmonic Sieve: Learning DNF Using a Classical Example Oracle

    RandomBoost: Simplified Multi-class Boosting through Randomization

    Full text link
    We propose a novel boosting approach to multi-class classification problems, in which multiple classes are distinguished by a set of random projection matrices in essence. The approach uses random projections to alleviate the proliferation of binary classifiers typically required to perform multi-class classification. The result is a multi-class classifier with a single vector-valued parameter, irrespective of the number of classes involved. Two variants of this approach are proposed. The first method randomly projects the original data into new spaces, while the second method randomly projects the outputs of learned weak classifiers. These methods are not only conceptually simple but also effective and easy to implement. A series of experiments on synthetic, machine learning and visual recognition data sets demonstrate that our proposed methods compare favorably to existing multi-class boosting algorithms in terms of both the convergence rate and classification accuracy.Comment: 15 page

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc
    • …
    corecore