651 research outputs found

    Hashmod: A Hashing Method for Scalable 3D Object Detection

    Full text link
    We present a scalable method for detecting objects and estimating their 3D poses in RGB-D data. To this end, we rely on an efficient representation of object views and employ hashing techniques to match these views against the input frame in a scalable way. While a similar approach already exists for 2D detection, we show how to extend it to estimate the 3D pose of the detected objects. In particular, we explore different hashing strategies and identify the one which is more suitable to our problem. We show empirically that the complexity of our method is sublinear with the number of objects and we enable detection and pose estimation of many 3D objects with high accuracy while outperforming the state-of-the-art in terms of runtime.Comment: BMVC 201

    Object Pose Estimation in Monocular Image Using Modified FDCM

    Get PDF
    In this paper, a new method for object detection and pose estimation in a monocular image is proposed based on FDCM method. it can detect object with high speed running time, even if the object was under the partial occlusion or in bad illumination. In addition, It requires only single template without any training process. The Modied FDCM based on FDCM with improvments, the LSD method was used in MFDCM instead of the line tting method, besides the integral distance transform was replaced with a distance transform image, and using an angular Voronoi diagram. In addition, the search process depends on Line segments based search instead of the sliding window search in FDCM. The MFDCM was evaluated by comparing it with FDCM in dierent scenarios and with other four methods: COF, HALCON, LINE2D, and BOLD using D-textureless dataset. The comparison results show that MFDCM was at least 14 times faster than FDCM in tested scenarios. Furthermore, it has the highest correct detection rate among all tested method with small advantage from COF and BLOD methods, while it was a little slower than LINE2D which was the fasted method among compared methods. The results proves that MFDCM able to detect and pose estimation of the objects in the clear or clustered background from a monocular image with high speed running time, even if the object was under the partial occlusion which makes it robust and reliable for real-time applications

    PACS Evolutionary Probe (PEP) - A Herschel Key Program

    Get PDF
    Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role in the complement of Herschel surveys, and the field selection which includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high redshift galaxy populations, thus testing and superseeding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.Comment: 13 pages, 12 figures, accepted for publication in A&

    SPHERE: the exoplanet imager for the Very Large Telescope

    Get PDF
    Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&

    Automatic human face detection in color images

    Get PDF
    Automatic human face detection in digital image has been an active area of research over the past decade. Among its numerous applications, face detection plays a key role in face recognition system for biometric personal identification, face tracking for intelligent human computer interface (HCI), and face segmentation for object-based video coding. Despite significant progress in the field in recent years, detecting human faces in unconstrained and complex images remains a challenging problem in computer vision. An automatic system that possesses a similar capability as the human vision system in detecting faces is still a far-reaching goal. This thesis focuses on the problem of detecting human laces in color images. Although many early face detection algorithms were designed to work on gray-scale Images, strong evidence exists to suggest face detection can be done more efficiently by taking into account color characteristics of the human face. In this thesis, we present a complete and systematic face detection algorithm that combines the strengths of both analytic and holistic approaches to face detection. The algorithm is developed to detect quasi-frontal faces in complex color Images. This face class, which represents typical detection scenarios in most practical applications of face detection, covers a wide range of face poses Including all in-plane rotations and some out-of-plane rotations. The algorithm is organized into a number of cascading stages including skin region segmentation, face candidate selection, and face verification. In each of these stages, various visual cues are utilized to narrow the search space for faces. In this thesis, we present a comprehensive analysis of skin detection using color pixel classification, and the effects of factors such as the color space, color classification algorithm on segmentation performance. We also propose a novel and efficient face candidate selection technique that is based on color-based eye region detection and a geometric face model. This candidate selection technique eliminates the computation-intensive step of window scanning often employed In holistic face detection, and simplifies the task of detecting rotated faces. Besides various heuristic techniques for face candidate verification, we developface/nonface classifiers based on the naive Bayesian model, and investigate three feature extraction schemes, namely intensity, projection on face subspace and edge-based. Techniques for improving face/nonface classification are also proposed, including bootstrapping, classifier combination and using contextual information. On a test set of face and nonface patterns, the combination of three Bayesian classifiers has a correct detection rate of 98.6% at a false positive rate of 10%. Extensive testing results have shown that the proposed face detector achieves good performance in terms of both detection rate and alignment between the detected faces and the true faces. On a test set of 200 images containing 231 faces taken from the ECU face detection database, the proposed face detector has a correct detection rate of 90.04% and makes 10 false detections. We have found that the proposed face detector is more robust In detecting in-plane rotated laces, compared to existing face detectors. +D2

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Deep Absorption Line Studies of Quiescent Galaxies at z~2: The Dynamical Mass-Size Relation, and First Constraints on the Fundamental plane

    Full text link
    We present dynamical and structural scaling relations of quiescent galaxies at z=2, including the dynamical mass-size relation and the first constraints on the fundamental plane (FP). The backbone of the analysis is a new, very deep VLT/X-shooter spectrum of a massive, compact, quiescent galaxy at z=2.0389. We detect the continuum between 3700-22000A and several strong absorption features (Balmer series, Ca H+K, G-band), from which we derive a stellar velocity dispersion of 318 +/- 53 km/s. We perform detailed modeling of the continuum emission and line indices and derive strong simultaneous constraints on the age, metallicity, and stellar mass. The galaxy is a dusty (A_V=0.77 (+0.36,-0.32)) solar metallicity (log(Z/Zsun) = 0.02 (+0.20,-0.41)) post starburst galaxy, with a mean luminosity weighted log(age/yr) of 8.9 +/- 0.1. The galaxy formed the majority of its stars at z>3 and currently has little or no ongoing star formation. We compile a sample of three other z~2 quiescent galaxies with measured velocity dispersions, two of which are also post starburst like. Their dynamical mass-size relation is offset significantly less than the stellar mass-size relation from the local early type relations, which we attribute to a lower central dark matter fraction. Recent cosmological merger simulations qualitatively agree with the data, but can not fully account for the evolution in the dark matter fraction. The z~2 FP requires additional evolution beyond passive stellar aging, to be in agreement with the local FP. The structural evolution predicted by the cosmological simulations is insufficient, suggesting that additional, possibly non-homologous structural evolution is needed.Comment: Re-submitted to ApJ after implementing the comments of the refere

    Real-Time Multi-Fisheye Camera Self-Localization and Egomotion Estimation in Complex Indoor Environments

    Get PDF
    In this work a real-time capable multi-fisheye camera self-localization and egomotion estimation framework is developed. The thesis covers all aspects ranging from omnidirectional camera calibration to the development of a complete multi-fisheye camera SLAM system based on a generic multi-camera bundle adjustment method
    corecore