41,018 research outputs found

    Boosting insights in insurance tariff plans with tree-based machine learning methods

    Full text link
    Pricing actuaries typically operate within the framework of generalized linear models (GLMs). With the upswing of data analytics, our study puts focus on machine learning methods to develop full tariff plans built from both the frequency and severity of claims. We adapt the loss functions used in the algorithms such that the specific characteristics of insurance data are carefully incorporated: highly unbalanced count data with excess zeros and varying exposure on the frequency side combined with scarce, but potentially long-tailed data on the severity side. A key requirement is the need for transparent and interpretable pricing models which are easily explainable to all stakeholders. We therefore focus on machine learning with decision trees: starting from simple regression trees, we work towards more advanced ensembles such as random forests and boosted trees. We show how to choose the optimal tuning parameters for these models in an elaborate cross-validation scheme, we present visualization tools to obtain insights from the resulting models and the economic value of these new modeling approaches is evaluated. Boosted trees outperform the classical GLMs, allowing the insurer to form profitable portfolios and to guard against potential adverse risk selection

    Optimization of Signal Significance by Bagging Decision Trees

    Get PDF
    An algorithm for optimization of signal significance or any other classification figure of merit suited for analysis of high energy physics (HEP) data is described. This algorithm trains decision trees on many bootstrap replicas of training data with each tree required to optimize the signal significance or any other chosen figure of merit. New data are then classified by a simple majority vote of the built trees. The performance of this algorithm has been studied using a search for the radiative leptonic decay B->gamma l nu at BaBar and shown to be superior to that of all other attempted classifiers including such powerful methods as boosted decision trees. In the B->gamma e nu channel, the described algorithm increases the expected signal significance from 2.4 sigma obtained by an original method designed for the B->gamma l nu analysis to 3.0 sigma.Comment: 8 pages, 2 figures, 1 tabl

    Efficient Version-Space Reduction for Visual Tracking

    Full text link
    Discrminative trackers, employ a classification approach to separate the target from its background. To cope with variations of the target shape and appearance, the classifier is updated online with different samples of the target and the background. Sample selection, labeling and updating the classifier is prone to various sources of errors that drift the tracker. We introduce the use of an efficient version space shrinking strategy to reduce the labeling errors and enhance its sampling strategy by measuring the uncertainty of the tracker about the samples. The proposed tracker, utilize an ensemble of classifiers that represents different hypotheses about the target, diversify them using boosting to provide a larger and more consistent coverage of the version-space and tune the classifiers' weights in voting. The proposed system adjusts the model update rate by promoting the co-training of the short-memory ensemble with a long-memory oracle. The proposed tracker outperformed state-of-the-art trackers on different sequences bearing various tracking challenges.Comment: CRV'17 Conferenc

    VAT tax gap prediction: a 2-steps Gradient Boosting approach

    Full text link
    Tax evasion is the illegal evasion of taxes by individuals, corporations, and trusts. The revenue loss from tax avoidance can undermine the effectiveness and equity of the government policies. A standard measure of tax evasion is the tax gap, that can be estimated as the difference between the total amounts of tax theoretically collectable and the total amounts of tax actually collected in a given period. This paper presents an original contribution to bottom-up approach, based on results from fiscal audits, through the use of Machine Learning. The major disadvantage of bottom-up approaches is represented by selection bias when audited taxpayers are not randomly selected, as in the case of audits performed by the Italian Revenue Agency. Our proposal, based on a 2-steps Gradient Boosting model, produces a robust tax gap estimate and, embeds a solution to correct for the selection bias which do not require any assumptions on the underlying data distribution. The 2-steps Gradient Boosting approach is used to estimate the Italian Value-added tax (VAT) gap on individual firms on the basis of fiscal and administrative data income tax returns gathered from Tax Administration Data Base, for the fiscal year 2011. The proposed method significantly boost the performance in predicting with respect to the classical parametric approaches.Comment: 27 pages, 4 figures, 8 tables Presented at NTTS 2019 conference Under review at another peer-reviewed journa
    • …
    corecore