704 research outputs found

    Towards holistic scene understanding:Semantic segmentation and beyond

    Get PDF
    This dissertation addresses visual scene understanding and enhances segmentation performance and generalization, training efficiency of networks, and holistic understanding. First, we investigate semantic segmentation in the context of street scenes and train semantic segmentation networks on combinations of various datasets. In Chapter 2 we design a framework of hierarchical classifiers over a single convolutional backbone, and train it end-to-end on a combination of pixel-labeled datasets, improving generalizability and the number of recognizable semantic concepts. Chapter 3 focuses on enriching semantic segmentation with weak supervision and proposes a weakly-supervised algorithm for training with bounding box-level and image-level supervision instead of only with per-pixel supervision. The memory and computational load challenges that arise from simultaneous training on multiple datasets are addressed in Chapter 4. We propose two methodologies for selecting informative and diverse samples from datasets with weak supervision to reduce our networks' ecological footprint without sacrificing performance. Motivated by memory and computation efficiency requirements, in Chapter 5, we rethink simultaneous training on heterogeneous datasets and propose a universal semantic segmentation framework. This framework achieves consistent increases in performance metrics and semantic knowledgeability by exploiting various scene understanding datasets. Chapter 6 introduces the novel task of part-aware panoptic segmentation, which extends our reasoning towards holistic scene understanding. This task combines scene and parts-level semantics with instance-level object detection. In conclusion, our contributions span over convolutional network architectures, weakly-supervised learning, part and panoptic segmentation, paving the way towards a holistic, rich, and sustainable visual scene understanding.Comment: PhD Thesis, Eindhoven University of Technology, October 202

    SFNet: Faster and Accurate Semantic Segmentation via Semantic Flow

    Full text link
    In this paper, we focus on exploring effective methods for faster and accurate semantic segmentation. A common practice to improve the performance is to attain high-resolution feature maps with strong semantic representation. Two strategies are widely used: atrous convolutions and feature pyramid fusion, while both are either computationally intensive or ineffective. Inspired by the Optical Flow for motion alignment between adjacent video frames, we propose a Flow Alignment Module (FAM) to learn \textit{Semantic Flow} between feature maps of adjacent levels and broadcast high-level features to high-resolution features effectively and efficiently. Furthermore, integrating our FAM to a standard feature pyramid structure exhibits superior performance over other real-time methods, even on lightweight backbone networks, such as ResNet-18 and DFNet. Then to further speed up the inference procedure, we also present a novel Gated Dual Flow Alignment Module to directly align high-resolution feature maps and low-resolution feature maps where we term the improved version network as SFNet-Lite. Extensive experiments are conducted on several challenging datasets, where results show the effectiveness of both SFNet and SFNet-Lite. In particular, when using Cityscapes test set, the SFNet-Lite series achieve 80.1 mIoU while running at 60 FPS using ResNet-18 backbone and 78.8 mIoU while running at 120 FPS using STDC backbone on RTX-3090. Moreover, we unify four challenging driving datasets into one large dataset, which we named Unified Driving Segmentation (UDS) dataset. It contains diverse domain and style information. We benchmark several representative works on UDS. Both SFNet and SFNet-Lite still achieve the best speed and accuracy trade-off on UDS, which serves as a strong baseline in such a challenging setting. The code and models are publicly available at https://github.com/lxtGH/SFSegNets.Comment: IJCV-2023; Extension of Previous work arXiv:2002.1012

    Understanding Dark Scenes by Contrasting Multi-Modal Observations

    Full text link
    Understanding dark scenes based on multi-modal image data is challenging, as both the visible and auxiliary modalities provide limited semantic information for the task. Previous methods focus on fusing the two modalities but neglect the correlations among semantic classes when minimizing losses to align pixels with labels, resulting in inaccurate class predictions. To address these issues, we introduce a supervised multi-modal contrastive learning approach to increase the semantic discriminability of the learned multi-modal feature spaces by jointly performing cross-modal and intra-modal contrast under the supervision of the class correlations. The cross-modal contrast encourages same-class embeddings from across the two modalities to be closer and pushes different-class ones apart. The intra-modal contrast forces same-class or different-class embeddings within each modality to be together or apart. We validate our approach on a variety of tasks that cover diverse light conditions and image modalities. Experiments show that our approach can effectively enhance dark scene understanding based on multi-modal images with limited semantics by shaping semantic-discriminative feature spaces. Comparisons with previous methods demonstrate our state-of-the-art performance. Code and pretrained models are available at https://github.com/palmdong/SMMCL

    Geometry meets semantics for semi-supervised monocular depth estimation

    Full text link
    Depth estimation from a single image represents a very exciting challenge in computer vision. While other image-based depth sensing techniques leverage on the geometry between different viewpoints (e.g., stereo or structure from motion), the lack of these cues within a single image renders ill-posed the monocular depth estimation task. For inference, state-of-the-art encoder-decoder architectures for monocular depth estimation rely on effective feature representations learned at training time. For unsupervised training of these models, geometry has been effectively exploited by suitable images warping losses computed from views acquired by a stereo rig or a moving camera. In this paper, we make a further step forward showing that learning semantic information from images enables to improve effectively monocular depth estimation as well. In particular, by leveraging on semantically labeled images together with unsupervised signals gained by geometry through an image warping loss, we propose a deep learning approach aimed at joint semantic segmentation and depth estimation. Our overall learning framework is semi-supervised, as we deploy groundtruth data only in the semantic domain. At training time, our network learns a common feature representation for both tasks and a novel cross-task loss function is proposed. The experimental findings show how, jointly tackling depth prediction and semantic segmentation, allows to improve depth estimation accuracy. In particular, on the KITTI dataset our network outperforms state-of-the-art methods for monocular depth estimation.Comment: 16 pages, Accepted to ACCV 201

    Segmentation de scènes extérieures à partir d'ensembles d'étiquettes à granularité et sémantique variables

    No full text
    International audienceIn this work, we present an approach that leverages multiple datasets annotated using different classes (different labelsets) to improve the classification accuracy on each individual dataset. We focus on semantic full scene labeling of outdoor scenes. To achieve our goal, we use the KITTI dataset as it illustrates very well the focus of our paper : it has been sparsely labeled by multiple research groups over the past few years but the semantics and the granularity of the labels differ from one set to another. We propose a method to train deep convolutional networks using multiple datasets with potentially inconsistent labelsets and a selective loss function to train it with all the available labeled data while being reliant to inconsistent labelings. Experiments done on all the KITTI dataset's labeled subsets show that our approach consistently improves the classification accuracy by exploiting the correlations across data-sets both at the feature level and at the label level.Ce papier présente une approche permettant d'utiliser plusieurs bases de données annotées avec différents ensembles d'étiquettes pour améliorer la précision d'un classifieur entrainé sur une tâche de segmentation sémantique de scènes extérieures. Dans ce contexte, la base de données KITTI nous fournit un cas d'utilisation particulièrement pertinent : des sous-ensembles distincts de cette base ont été annotés par plusieurs équipes en utilisant des étiquettes différentes pour chaque sous-ensemble. Notre méthode permet d'entraîner un réseau de neurones convolutionnel (CNN) en utilisant plusieurs bases de données avec des étiquettes possiblement incohérentes. Nous présentons une fonction de perte sélective pour entrainer ce réseau et plusieurs approches de fusion permettant d'exploiter les corrélations entre les différents ensembles d'étiquettes. Le réseau utilise ainsi toutes les données disponibles pour améliorer les performances de classification sur chaque ensemble. Les expériences faites sur les différents sous-ensembles de la base de données KITTI montrent comment chaque proposition contribue à améliorer le classifieur
    • …
    corecore