776 research outputs found

    Cloud Cooperated Heterogeneous Cellular Networks for Delayed Offloading using Millimeter Wave Gates

    Get PDF
    Increasing the capacity of wireless cellular network is one of the major challenges for the coming years. A lot of research works have been done to exploit the ultra-wide band of millimeter wave (mmWave) and integrate it into future cellular networks. In this paper, to efficiently utilize the mmWave band while reducing the total deployment cost, we propose to deploy the mmWave access in the form of ultra-high capacity mmWave gates distributed in the coverage area of the macro basestation (Macro BS). Delayed offloading is also proposed to proficiently exploit the gates and relax the demand of deploying a large number of them. Furthermore, a mobility-aware weighted proportional fair (WPF) user scheduling is proposed to maximize the intra-gate offloading efficiency while maintaining the long-term offloading fairness among the users inside the gate. To efficiently link the mmWave gates with the Macro BS in a unified cellular network structure, a cloud cooperated heterogeneous cellular network (CC-HetNet) is proposed. In which, the gates and the Macro BS are linked to the centralized radio access network (C-RAN) via high-speed backhaul links. Using the concept of control/user (C/U) plane splitting, signaling information is sent to the UEs through the wide coverage Macro BS, and most of users’ delayed traffic is offloaded through the ultra-high capacity mmWave gates. An enhanced access network discovery and selection function (eANDSF) based on a network wide proportional fair criterion is proposed to discover and select an optimal mmWave gate to associate a user with delayed traffic. It is interesting to find out that a mmWave gate consisting of only 4 mmWave access points (APs) can offload up to 70 GB of delayed traffic within 25 sec, which reduces the energy consumption of a user equipment (UE) by 99.6 % compared to the case of only using Macro BS without gate offloading. Also, more than a double increase in total gates offloaded bytes is obtained using the proposed eANDSF over using the conventional ANDSF proposed by 3GPP due to the optimality in selecting the associating gate. 

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    A Theoretical Approach to Optimize the Pipeline Data Communication in Oil and Gas Remote Locations Using Sky X Technology

    Get PDF
    Oil, gas, and water distribution networks in remote locations require optimized data transmission from their sources to prevent or detect leakage or improve production flow in their manufacturing units. Remote oil and gas installations frequently encounter substantial obstacles in terms of data connectivity and transfer. Slow data transmission rates, data loss, and decision-making delays can all be caused by a lack of dependable network infrastructure, restricted bandwidth, and severe climatic conditions. The purpose of this research work is to identify critical concerns concerning data communication and data transfer in oil and gas distant areas and to investigate feasible approaches to these challenges. The survey was carried out to gather feedback from oil and gas experts on issues concerning data transmission in remote locations. This study provides a theoretical approach to optimizing data transmission and communication in remote areas using Sky X technology. This study presents a new theoretical method that improves the performance of IP over satellite using the critical aspects of data transmission issues from experts. This technology's contribution can improve the reliability of all users on a satellite network by delivering all features with a successful data transfer rate discreetly. This attempt may also aid oil and gas companies in optimizing data transmission/communication in remote regions

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Toward Open and Programmable Wireless Network Edge

    Get PDF
    Increasingly, the last hop connecting users to their enterprise and home networks is wireless. Wireless is becoming ubiquitous not only in homes and enterprises but in public venues such as coffee shops, hospitals, and airports. However, most of the publicly and privately available wireless networks are proprietary and closed in operation. Also, there is little effort from industries to move forward on a path to greater openness for the requirement of innovation. Therefore, we believe it is the domain of university researchers to enable innovation through openness. In this thesis work, we introduce and defines the importance of open framework in addressing the complexity of the wireless network. The Software Defined Network (SDN) framework has emerged as a popular solution for the data center network. However, the promise of the SDN framework is to make the network open, flexible and programmable. In order to deliver on the promise, SDN must work for all users and across all networks, both wired and wireless. Therefore, we proposed to create new modules and APIs to extend the standard SDN framework all the way to the end-devices (i.e., mobile devices, APs). Thus, we want to provide an extensible and programmable abstraction of the wireless network as part of the current SDN-based solution. In this thesis work, we design and develop a framework, weSDN (wireless extension of SDN), that extends the SDN control capability all the way to the end devices to support client-network interaction capabilities and new services. weSDN enables the control-plane of wireless networks to be extended to mobile devices and allows for top-level decisions to be made from an SDN controller with knowledge of the network as a whole, rather than device centric configurations. In addition, weSDN easily obtains user application information, as well as the ability to monitor and control application flows dynamically. Based on the weSDN framework, we demonstrate new services such as application-aware traffic management, WLAN virtualization, and security management

    Power Beacon’s deployment optimization for wirelessly powering massive Internet of Things networks

    Get PDF
    Abstract. The fifth-generation (5G) and beyond wireless cellular networks promise the native support to, among other use cases, the so-called Internet of Things (IoT). Different from human-based cellular services, IoT networks implement a novel vision where ordinary machines possess the ability to autonomously sense, actuate, compute, and communicate throughout the Internet. However, as the number of connected devices grows larger, an urgent demand for energy-efficient communication technologies arises. A key challenge related to IoT devices is that their very small form factor allows them to carry just a tiny battery that might not be even possible to replace due to installation conditions, or too costly in terms of maintenance because of the massiveness of the network. This issue limits the lifetime of the network and compromises its reliability. Wireless energy transfer (WET) has emerged as a potential candidate to replenish sensors’ batteries or to sustain the operation of battery-free devices, as it provides a controllable source of energy over-the-air. Therefore, WET eliminates the need for regular maintenance, allows sensors’ form factor reduction, and reduces the battery disposal that contributes to the environment pollution. In this thesis, we review some WET-enabled scenarios and state-of-the-art techniques for implementing WET in IoT networks. In particular, we focus our attention on the deployment optimization of the so-called power beacons (PBs), which are the energy transmitters for charging a massive IoT deployment subject to a network-wide probabilistic energy outage constraint. We assume that IoT sensors’ positions are unknown at the PBs, and hence we maximize the average incident power on the worst network location. We propose a linear-time complexity algorithm for optimizing the PBs’ positions that outperforms benchmark methods in terms of minimum average incident power and computation time. Then, we also present some insights on the maximum coverage area under certain propagation conditions
    • 

    corecore