22,547 research outputs found

    Logic Programming approaches for routing fault-free and maximally-parallel Wavelength Routed Optical Networks on Chip (Application paper)

    Get PDF
    One promising trend in digital system integration consists of boosting on-chip communication performance by means of silicon photonics, thus materializing the so-called Optical Networks-on-Chip (ONoCs). Among them, wavelength routing can be used to route a signal to destination by univocally associating a routing path to the wavelength of the optical carrier. Such wavelengths should be chosen so to minimize interferences among optical channels and to avoid routing faults. As a result, physical parameter selection of such networks requires the solution of complex constrained optimization problems. In previous work, published in the proceedings of the International Conference on Computer-Aided Design, we proposed and solved the problem of computing the maximum parallelism obtainable in the communication between any two endpoints while avoiding misrouting of optical signals. The underlying technology, only quickly mentioned in that paper, is Answer Set Programming (ASP). In this work, we detail the ASP approach we used to solve such problem. Another important design issue is to select the wavelengths of optical carriers such that they are spread across the available spectrum, in order to reduce the likelihood that, due to imperfections in the manufacturing process, unintended routing faults arise. We show how to address such problem in Constraint Logic Programming on Finite Domains (CLP(FD)). This paper is under consideration for possible publication on Theory and Practice of Logic Programming.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 pages, LaTeX, 5 figure

    Random Relational Rules

    Get PDF
    Exhaustive search in relational learning is generally infeasible, therefore some form of heuristic search is usually employed, such as in FOIL[1]. On the other hand, so-called stochastic discrimination provides a framework for combining arbitrary numbers of weak classifiers (in this case randomly generated relational rules) in a way where accuracy improves with additional rules, even after maximal accuracy on the training data has been reached. [2] The weak classifiers must have a slightly higher probability of covering instances of their target class than of other classes. As the rules are also independent and identically distributed, the Central Limit theorem applies and as the number of weak classifiers/rules grows, coverages for different classes resemble well-separated normal distributions. Stochastic discrimination is closely related to other ensemble methods like Bagging, Boosting, or Random forests, all of which have been tried in relational learning [3, 4, 5]

    Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME

    Full text link
    We present a heuristic based algorithm to induce \textit{nonmonotonic} logic programs that will explain the behavior of XGBoost trained classifiers. We use the technique based on the LIME approach to locally select the most important features contributing to the classification decision. Then, in order to explain the model's global behavior, we propose the LIME-FOLD algorithm ---a heuristic-based inductive logic programming (ILP) algorithm capable of learning non-monotonic logic programs---that we apply to a transformed dataset produced by LIME. Our proposed approach is agnostic to the choice of the ILP algorithm. Our experiments with UCI standard benchmarks suggest a significant improvement in terms of classification evaluation metrics. Meanwhile, the number of induced rules dramatically decreases compared to ALEPH, a state-of-the-art ILP system

    Machine Learning at Microsoft with ML .NET

    Full text link
    Machine Learning is transitioning from an art and science into a technology available to every developer. In the near future, every application on every platform will incorporate trained models to encode data-based decisions that would be impossible for developers to author. This presents a significant engineering challenge, since currently data science and modeling are largely decoupled from standard software development processes. This separation makes incorporating machine learning capabilities inside applications unnecessarily costly and difficult, and furthermore discourage developers from embracing ML in first place. In this paper we present ML .NET, a framework developed at Microsoft over the last decade in response to the challenge of making it easy to ship machine learning models in large software applications. We present its architecture, and illuminate the application demands that shaped it. Specifically, we introduce DataView, the core data abstraction of ML .NET which allows it to capture full predictive pipelines efficiently and consistently across training and inference lifecycles. We close the paper with a surprisingly favorable performance study of ML .NET compared to more recent entrants, and a discussion of some lessons learned
    corecore