2,238 research outputs found

    Exploring Human Vision Driven Features for Pedestrian Detection

    Full text link
    Motivated by the center-surround mechanism in the human visual attention system, we propose to use average contrast maps for the challenge of pedestrian detection in street scenes due to the observation that pedestrians indeed exhibit discriminative contrast texture. Our main contributions are first to design a local, statistical multi-channel descriptorin order to incorporate both color and gradient information. Second, we introduce a multi-direction and multi-scale contrast scheme based on grid-cells in order to integrate expressive local variations. Contributing to the issue of selecting most discriminative features for assessing and classification, we perform extensive comparisons w.r.t. statistical descriptors, contrast measurements, and scale structures. This way, we obtain reasonable results under various configurations. Empirical findings from applying our optimized detector on the INRIA and Caltech pedestrian datasets show that our features yield state-of-the-art performance in pedestrian detection.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    How is Gaze Influenced by Image Transformations? Dataset and Model

    Full text link
    Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time consuming and expensive. Most of current studies on human attention and saliency modeling have used high quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial network (dubbed GazeGAN). A modified UNet is proposed as the generator of the GazeGAN, which combines classic skip connections with a novel center-surround connection (CSC), in order to leverage multi level features. We also propose a histogram loss based on Alternative Chi Square Distance (ACS HistLoss) to refine the saliency map in terms of luminance distribution. Extensive experiments and comparisons over 3 datasets indicate that GazeGAN achieves the best performance in terms of popular saliency evaluation metrics, and is more robust to various perturbations. Our code and data are available at: https://github.com/CZHQuality/Sal-CFS-GAN

    Salient Object Detection via Augmented Hypotheses

    Get PDF
    In this paper, we propose using \textit{augmented hypotheses} which consider objectness, foreground and compactness for salient object detection. Our algorithm consists of four basic steps. First, our method generates the objectness map via objectness hypotheses. Based on the objectness map, we estimate the foreground margin and compute the corresponding foreground map which prefers the foreground objects. From the objectness map and the foreground map, the compactness map is formed to favor the compact objects. We then derive a saliency measure that produces a pixel-accurate saliency map which uniformly covers the objects of interest and consistently separates fore- and background. We finally evaluate the proposed framework on two challenging datasets, MSRA-1000 and iCoSeg. Our extensive experimental results show that our method outperforms state-of-the-art approaches.Comment: IJCAI 2015 pape

    Effective classifiers for detecting objects

    Get PDF
    Several state-of-the-art machine learning classifiers are compared for the purposes of object detection in complex images, using global image features derived from the Ohta color space and Local Binary Patterns. Image complexity in this sense refers to the degree to which the target objects are occluded and/or non-dominant (i.e. not in the foreground) in the image, and also the degree to which the images are cluttered with non-target objects. The results indicate that a voting ensemble of Support Vector Machines, Random Forests, and Boosted Decision Trees provide the best performance with AUC values of up to 0.92 and Equal Error Rate accuracies of up to 85.7% in stratified 10-fold cross validation experiments on the GRAZ02 complex image dataset
    • 

    corecore