222 research outputs found

    The INTERSPEECH 2020 Far-Field Speaker Verification Challenge

    Full text link
    The INTERSPEECH 2020 Far-Field Speaker Verification Challenge (FFSVC 2020) addresses three different research problems under well-defined conditions: far-field text-dependent speaker verification from single microphone array, far-field text-independent speaker verification from single microphone array, and far-field text-dependent speaker verification from distributed microphone arrays. All three tasks pose a cross-channel challenge to the participants. To simulate the real-life scenario, the enrollment utterances are recorded from close-talk cellphone, while the test utterances are recorded from the far-field microphone arrays. In this paper, we describe the database, the challenge, and the baseline system, which is based on a ResNet-based deep speaker network with cosine similarity scoring. For a given utterance, the speaker embeddings of different channels are equally averaged as the final embedding. The baseline system achieves minDCFs of 0.62, 0.66, and 0.64 and EERs of 6.27%, 6.55%, and 7.18% for task 1, task 2, and task 3, respectively.Comment: Submitted to INTERSPEECH 202

    Balancing Biases and Preserving Privacy on Balanced Faces in the Wild

    Full text link
    Demographic biases exist in current models used for facial recognition (FR). Our Balanced Faces in the Wild (BFW) dataset is a proxy to measure bias across ethnicity and gender subgroups, allowing one to characterize FR performances per subgroup. We show that results are non-optimal when a single score threshold determines whether sample pairs are genuine or imposters. Furthermore, within subgroups, performance often varies significantly from the global average. Thus, specific error rates only hold for populations matching the validation data. We mitigate the imbalanced performances using a novel domain adaptation learning scheme on the facial features extracted from state-of-the-art neural networks, boosting the average performance. The proposed method also preserves identity information while removing demographic knowledge. The removal of demographic knowledge prevents potential biases from being injected into decision-making and protects privacy since demographic information is no longer available. We explore the proposed method and show that subgroup classifiers can no longer learn from the features projected using our domain adaptation scheme. For source code and data, see https://github.com/visionjo/facerec-bias-bfw.Comment: arXiv admin note: text overlap with arXiv:2102.0894

    Improving Representation Learning for Deep Clustering and Few-shot Learning

    Get PDF
    The amounts of data in the world have increased dramatically in recent years, and it is quickly becoming infeasible for humans to label all these data. It is therefore crucial that modern machine learning systems can operate with few or no labels. The introduction of deep learning and deep neural networks has led to impressive advancements in several areas of machine learning. These advancements are largely due to the unprecedented ability of deep neural networks to learn powerful representations from a wide range of complex input signals. This ability is especially important when labeled data is limited, as the absence of a strong supervisory signal forces models to rely more on intrinsic properties of the data and its representations. This thesis focuses on two key concepts in deep learning with few or no labels. First, we aim to improve representation quality in deep clustering - both for single-view and multi-view data. Current models for deep clustering face challenges related to properly representing semantic similarities, which is crucial for the models to discover meaningful clusterings. This is especially challenging with multi-view data, since the information required for successful clustering might be scattered across many views. Second, we focus on few-shot learning, and how geometrical properties of representations influence few-shot classification performance. We find that a large number of recent methods for few-shot learning embed representations on the hypersphere. Hence, we seek to understand what makes the hypersphere a particularly suitable embedding space for few-shot learning. Our work on single-view deep clustering addresses the susceptibility of deep clustering models to find trivial solutions with non-meaningful representations. To address this issue, we present a new auxiliary objective that - when compared to the popular autoencoder-based approach - better aligns with the main clustering objective, resulting in improved clustering performance. Similarly, our work on multi-view clustering focuses on how representations can be learned from multi-view data, in order to make the representations suitable for the clustering objective. Where recent methods for deep multi-view clustering have focused on aligning view-specific representations, we find that this alignment procedure might actually be detrimental to representation quality. We investigate the effects of representation alignment, and provide novel insights on when alignment is beneficial, and when it is not. Based on our findings, we present several new methods for deep multi-view clustering - both alignment and non-alignment-based - that out-perform current state-of-the-art methods. Our first work on few-shot learning aims to tackle the hubness problem, which has been shown to have negative effects on few-shot classification performance. To this end, we present two new methods to embed representations on the hypersphere for few-shot learning. Further, we provide both theoretical and experimental evidence indicating that embedding representations as uniformly as possible on the hypersphere reduces hubness, and improves classification accuracy. Furthermore, based on our findings on hyperspherical embeddings for few-shot learning, we seek to improve the understanding of representation norms. In particular, we ask what type of information the norm carries, and why it is often beneficial to discard the norm in classification models. We answer this question by presenting a novel hypothesis on the relationship between representation norm and the number of a certain class of objects in the image. We then analyze our hypothesis both theoretically and experimentally, presenting promising results that corroborate the hypothesis
    • …
    corecore